Position, Navigation, and Timing Technologies in the 21st Century. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов страница 100

Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов

Скачать книгу

insertion of the cyclic prefix makes the waveform periodic, giving it the capability to tolerate small timing errors. That is, only a phase distortion is introduced to the useful symbol if the processing at reception starts earlier into the cyclic prefix (i.e. no fine synchronization is required). Furthermore, a multipath signal with a delay smaller than the cyclic prefix duration is merely a circularly shifted version of the original signal, which affects the symbol by a complex distortion, not as an ISI, which can be corrected by the channel estimation as mentioned earlier.

      The above analysis illustrates the tolerance of OFDM to small sync errors and robustness against multipath, on the order of a half of the cyclic prefix duration. However, the OFDM modulation suffers from large to average power ratio (PAPR), which demands a high dynamic range, especially in the power amplifier (PA) of transmitters. Otherwise, the PA would enter saturation, causing nonlinear amplification of large‐amplitude signals. In addition, the guard bands are required in order to reduce possible inter‐band interference (IBI) such that the signal remains within its band in the presence of clock drift and Doppler frequency shift. The inter‐carrier (subcarrier) interference (ICI) can be avoided if the orthogonality of subcarriers is maintained, which places high demands on processing of OFDM baseband signals to cope with such issues as carrier frequency offset (CFO), carrier phase offset (CPO), sampling clock offset (SCO), symbol timing offset (STO), IQ imbalance and DC offset, and PA nonlinearity (constellation distortion and inter‐modulation distortion) [48].

      The DVB‐T standard specifies OFDM signals for 4, 5, 6, 7, and 8 MHz channels [44]. The parameters for an 8 MHz channel are shown in Figure 40.7. It has an elementary period T = 7/64 μs (the sampling period). The terrestrial transmission has two modes, namely, 2K and 8K. For the 8K mode, the FFT size (mode) is NFFT = 8192; the duration of useful symbol part is TU = NFFTT = 8192T = 896 μs; and the carrier spacing is 1/TU = 1116 Hz. The number of used carriers is K = 6817 so that the spacing between carriers Kmin = 0 and Kmax = 6816 is (K−1)/TU = 7.61 MHz, which is within the allocated channel bandwidth of 8 MHz. The difference between the allocated and used spectra is employed as the guard band; that is, the unused 1375 null subcarriers are split into 688 and 687 placed on the lower and upper edges of the transmission spectrum band, respectively. Several choices for the cyclic prefix duration Δ are listed in Figure 40.7. For Δ = 1/8TU, the cyclic prefix duration is Δ = 112 μs (or 1024T), and the resulting symbol duration is TS = TU + Δ = 1008 μs (or 9216T).

Schematic illustration of the frame structure of DVB-T signals. Schematic illustration of the generation of an OFDM symbol for DVB-T signals. Schematic illustration of the pilot organization for DVB-T signals.

      Furthermore, the continual and scattered pilots are modulated according to the pseudorandom binary sequence (PRBS) specified by the polynomial generator GPRBS(x) = x11 + x9 + 1 with the all‐one initial condition. The PRBS is initialized such that the first output bit from the PRBS corresponds to the first active carrier, and a new value is generated by the PRBS on every used carrier of an OFDM symbol, whether it is a pilot or not.

      After passing through a fading channel h(τ) with L discrete multipath components, the transmitted signal s(t) arrives at the receiver as r(t), which is captured by the antenna, and down‐converted from RF to a suitable IF for sampling or resampling if necessary. The sampling rate fs is typically a multiple of the fundamental rate (1/T). Once in the digital domain, the first operation is to determine the start sample of an OFDM symbol, which is called coarse symbol synchronization. A popular method for coarse symbol sync is to find a match between

Скачать книгу