Position, Navigation, and Timing Technologies in the 21st Century. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов страница 102

Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов

Скачать книгу

the peak.

Graphs depict ideal correlation functions for various components of an OFDM symbol.

      When the correlation functions of scattered pilots in four consecutive symbols are coherently summed, the resulting function has a periodicity of NFFT/3 as shown in Figure 40.11(c), which is because the pattern of aggregated scattered pilots has a spacing of three carriers. The correlation peak maintains the same shape, but the unambiguous interval increases by a factor of 4.

      The difference between continual pilot carrier indexes is shown in Figure 40.11(d), which exhibits repetition in frequency. The correlation function of continual pilots of an OFDM symbol is shown in Figure 40.11(e), which has the same periodicity as in Figure 40.11(c) but with a raised level of cross‐correlation due to spectral leakage of its irregular subcarrier placement. It is one reason why only scattered pilots are used in correlation tracking for refined TOA estimation.

      The correlation function of a full OFDM symbol with all subcarriers is shown in Figure 40.11(f), where the continual and scattered pilots have an amplitude factor of 4/3 while data subcarriers of unity amplitude are drawn randomly from a QPSK constellation of z = (1/images)(±1 ± j). The resulting correlation peak is similar to Figure 40.11(b), but the periodic peaks are significantly suppressed (below the fourth sidelobe). The full OFDM correlation can be used for decision‐directed tracking for refined TOA estimation as illustrated in Figure 40.10.

      After cyclic prefix removal, the FFT is applied to the samples in the useful part. The continual pilot pattern is used to estimate the integer CFO over two consecutive OFDM symbols, while the scattered pilot pattern for each OFDM symbol is detected after CFO correction. Figure 40.12(c) shows the CIR (the blue curve) estimated from an OFDM symbol as a snapshot of multipath acquisition. The threshold (the black dash line) is set as 80% of the total power within the acquisition region to detect possible paths (the red circled line). The first path is declared among all acquired paths according to their rate of occurrence. In this particular case, the paths arriving at 1564.5, 1565.5, and 1566.5 in samples are the three most frequently detected ones with their occurrence probability equal to 1, and the earliest arrival is at the 1564.5th sample. This path is then used to initiate the DLL tracking with the 20 s tracking results shown in Figure 40.12(d). As shown, the 95% accuracy is within 0.95 m with an estimated C/N0 of 57.97 dB‐Hz.

      In general, the carrier phase of OFDM signals is not tracked for at least two reasons. First, the dc component of most baseband OFDM symbols is a null subcarrier to avoid the effect of dc bias at reception. Second, generation and transmission of OFDM symbols are independent from one symbol to the next. As a result, no phase continuity is required to be maintained at any subcarriers. As analyzed earlier, for communications, demodulation of OFDM symbols with cyclic prefix is tolerant to small timing errors and depends on the relative phase at data subcarriers, which can be easily calibrated with the help of pilot subcarriers. However, the OFDM signaling adopted by DVB‐T retains the dc component. Besides, the cyclic prefix duration is specified in such a way that a whole number of cycles is ensured for the middle carrier [44]. It happens in DVB‐T that the middle carrier is assigned as a continual pilot subcarrier, which has a constant value across OFDM symbols. As a result, the baseband center frequency (dc component) has no phase discontinuity, which gives rise to the opportunity for carrier phase tracking. Carrier phase tracking has the potential to provide more accurate timing for ranging and ultimately for positioning than cross‐correlation of cyclic prefix and pilot subcarriers currently used for coarse and fine TOA estimation, respectively. The possibility of carrier phase tracking for DVB‐T signals was recently shown in [62] with in‐the‐air DVB‐T signals collected in experimental tests.

      40.2.3 ISDB‐T Signals for Timing and Ranging

Graphs depict test results of pilot-carriers-based delay tracking for refined TOA estimation.

      Source: Reproduced with permission of IEEE.

      As

Скачать книгу