Sustainable Food Packaging Technology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Sustainable Food Packaging Technology - Группа авторов страница 19

Sustainable Food Packaging Technology - Группа авторов

Скачать книгу

approach to plastic waste. Polymer Degradation and Stability 165: 170–181.

      9 9 Tharanathan, R.N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology 14 (3): 71–78.

      10 10 Ashter, S.A. (ed.) (2016). In Plastics Design Library, Introduction to Bioplastics Engineering, 81–151. William Andrew Publishing.

      11 11 Laycock, B., Nikolić, M., Colwell, J.M. et al. (2017). Lifetime prediction of biodegradable polymers. Progress in Polymer Science 71: 144–189.

      12 12 Thakur, S., Chaudhary, J., Sharma, B. et al. (2018). Sustainability of bioplastics: opportunities and challenges. Current Opinion in Green and Sustainable Chemistry 13: 68–75.

      13 13 Tsang, Y.F., Kumar, V., Samadar, P. et al. (2019). Production of bioplastic through food waste valorization. Environment International 127: 625–644.

      14 14 Balan, V. (2014). Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnology 2014: 463074–463074.

      15 15 Braunegg, G., Lefebvre, G., and Genser, K.F. (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. Journal of Biotechnology 65 (2): 127–161.

      16 16 Cui, S., Borgemenke, J., Liu, Z., and Li, Y. (2019). Recent advances of “soft” bio‐polycarbonate plastics from carbon dioxide and renewable bio‐feedstocks via straightforward and innovative routes. Journal of CO2 Utilization 34: 40–52.

      17 17 Höfer, R. and Selig, M. (2012). Green chemistry and green. Polymer Chemistry 10: 5–13.

      18 18 Hatti‐Kaul, R., Nilsson, L.J., Zhang, B. et al. (2019). Designing biobased recyclable polymers for plastics. Trends in Biotechnology 38: 50–67.

      19 19 Sorrentino, A., Gorrasi, G., and Vittoria, V. (2007). Potential perspectives of bio‐nanocomposites for food packaging applications. Trends in Food Science and Technology 18 (2): 84–95.

      20 20 Rhim, J.‐W., Park, H.‐M., and Ha, C.‐S. (2013). Bio‐nanocomposites for food packaging applications. Progress in Polymer Science 38 (10): 1629–1652.

      21 21 Vink, E.T.H., Glassner, D.A., Kolstad, J.J. et al. (2007). The eco‐profiles for current and near‐future NatureWorks® polylactide (PLA) production. Industrial Biotechnology 3 (1): 58–81.

      22 22 Vroman, I. and Tighzert, L. (2009). Biodegradable polymers. Materials 2 (2): 307–344.

      23 23 Schué, F. (2000). Biopolymers from renewable resources. Edited by D.L. Kaplan Springer‐Verlag, Heidelberg, 1998. Pp 417, Price DM278.00 ISBN 3‐540‐63567‐X. Polymer International 49 (5): 472–473.

      24 24 Auras, R., Harte, B., and Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience 4 (9): 835–864.

      25 25 Jamshidian, M., Tehrany, E.A., Imran, M. et al. (2010). Poly‐lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety 9 (5): 552–571.

      26 26 Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment 9 (2): 63–84.

      27 27 Conn, R.E., Kolstad, J.J., Borzelleca, J.F. et al. (1995). Safety assessment of polylactide (PLA) for use as a food‐contact polymer. Food and Chemical Toxicology 33 (4): 273–283.

      28 28 Harada, M., Ohya, T., Iida, K. et al. (2007). Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. Journal of Applied Polymer Science 106 (3): 1813–1820.

      29 29 Babu, R.P., O'Connor, K., and Seeram, R. (2013). Current progress on bio‐based polymers and their future trends. Progress in Biomaterials 2 (1): 8.

      30 30 Auras, R., Lim, L.T., Selke, S.E.M., and Tsuji, H. (2010). Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. Wiley, ISBN: 978‐0‐470‐29366‐9.

      31 31 Relinque, J.J., de León, A.S., Hernández‐Saz, J. et al. (2019). Development of surface‐coated polylactic acid/polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers 11 (3).

      32 32 Rocca‐Smith, J.R., Pasquarelli, R., Lagorce‐Tachon, A. et al. (2019). Toward sustainable PLA‐based multilayer complexes with improved barrier properties. ACS Sustainable Chemistry & Engineering 7 (4): 3759–3771.

      33 33 Torres‐Giner, S., Montanes, N., Fombuena, V. et al. (2018). Preparation and characterization of compression‐molded green composite sheets made of poly(3‐hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology 37 (5): 1305–1315.

      34 34 Mutlu, G., Calamak, S., Ulubayram, K., and Guven, E. (2018). Curcumin‐loaded electrospun PHBV nanofibers as potential wound‐dressing material. Journal of Drug Delivery Science and Technology 43: 185–193.

      35 35 Reddy, C.S.K., Ghai, R., Rashmi, and Kalia, V.C. (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology 87 (2): 137–146.

      36 36 Choi, J.‐I. and Lee, S.Y. (1997). Process analysis and economic evaluation for poly(3‐hydroxybutyrate) production by fermentation. Bioprocess Engineering 17 (6): 335–342.

      37 37 Yeo, J.C.C., Muiruri, J.K., Thitsartarn, W. et al. (2018). Recent advances in the development of biodegradable PHB‐based toughening materials: approaches, advantages and applications. Materials Science and Engineering: C 92: 1092–1116.

      38 38 McChalicher, C.W.J. and Srienc, F. (2007). Investigating the structure–property relationship of bacterial PHA block copolymers. Journal of Biotechnology 132 (3): 296–302.

      39 39 Keshavarz, T. and Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology 13 (3): 321–326.

      40 40 Khosravi‐Darani, K. and Bucci, D.Z. (2015). Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chemical and Biochemical Engineering Quarterly 29 (2): 275–285.

      41 41 Requena, R., Vargas, M., and Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal 92: 185–193.

      42 42 Torres‐Giner, S., Hilliou, L., Melendez‐Rodriguez, B. et al. (2018). Melt processability, characterization, and antibacterial activity of compression‐molded green composite sheets made of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life 17: 39–49.

      43 43 Herrera, R., Franco, L., Rodríguez‐Galán, A., and Puiggalí, J. (2002). Characterization and degradation behavior of poly(butylene adipate‐co‐terephthalate)s. Journal of Polymer Science Part A: Polymer Chemistry 40 (23): 4141–4157.

      44 44 Li, G., Shankar, S., Rhim, J.‐W., and Oh, B.‐Y. (2015). Effects of preparation method on properties of poly(butylene adipate‐co‐terephthalate) films. Food Science and Biotechnology 24 (5): 1679–1685.

      45 45 Witt, U., Einig, T., Yamamoto, M. et al. (2001). Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44 (2): 289–299.

      46 46 Fukushima, K., Wu, M.‐H., Bocchini,

Скачать книгу