Sustainable Food Packaging Technology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Sustainable Food Packaging Technology - Группа авторов страница 20

Sustainable Food Packaging Technology - Группа авторов

Скачать книгу

Xing, Q., Ruch, D., Dubois, P. et al. (2017). Biodegradable and high‐performance poly(butylene adipate‐co‐terephthalate)–lignin UV‐blocking films. ACS Sustainable Chemistry & Engineering 5 (11): 10342–10351.

      48 48 Wang, X., Peng, S., Chen, H. et al. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high‐toughness PLA/PBAT blends by in‐situ reactive compatibilization. Composites Part B: Engineering 173: 107028.

      49 49 Someya, Y., Sugahara, Y., and Shibata, M. (2005). Nanocomposites based on poly(butylene adipate‐co‐terephthalate) and montmorillonite. Journal of Applied Polymer Science 95 (2): 386–392.

      50 50 Chivrac, F., Kadlecova, Z., Pollet, E., and Avérous, L. (2006). Aromatic copolyester‐based nano‐biocomposites: elaboration, structural characterization and properties. Journal of Polymers and the Environment 14: 393–401.

      51 51 Mondal, D., Bhowmick, B., Mollick, M.M.R. et al. (2014). Antimicrobial activity and biodegradation behavior of poly(butylene adipate‐co‐terephthalate)/clay nanocomposites. Journal of Applied Polymer Science 131 (7): 40079.

      52 52 Al‐Itry, R., Lamnawar, K., and Maazouz, A. (2014). Reactive extrusion of PLA, PBAT with a multi‐functional epoxide: physico‐chemical and rheological properties. European Polymer Journal 58: 90–102.

      53 53 Zehetmeyer, G., Meira, S.M.M., Scheibel, J.M. et al. (2016). Influence of melt processing on biodegradable nisin‐PBAT films intended for active food packaging applications. Journal of Applied Polymer Science 133 (13).

      54 54 Sousa, G.M., Soares Júnior, M.S., and Yamashita, F. (2013). Active biodegradable films produced with blends of rice flour and poly(butylene adipate co‐terephthalate): effect of potassium sorbate on film characteristics. Materials Science and Engineering: C 33 (6): 3153–3159.

      55 55 Succinity. 2016. Biobased Polybutylene Succinate (PBS) ‐ an attractive polymer for biopolymer compounds.

      56 56 Xu, J. and Guo, B.‐H. (2010). Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnology Journal 5 (11): 1149–1163.

      57 57 Doug, S. (2010). Bioplastics: Technologies and Global Markets. BCC research reports PLS050A.

      58 58 Ravenstijn, J. (2010). The State‐of‐the‐Art on Bioplastics: Products, Markets, Trends and Technologies. Polymedia.

      59 59 Bajpai, P. (2019). Biobased Polymers: Properties and Applications in Packaging. Elsevier Science.

      60 60 Vytejčková, S., Vápenka, L., Hradecký, J. et al. (2017). Testing of polybutylene succinate based films for poultry meat packaging. Polymer Testing 60: 357–364.

      61 61 Jacquel, N., Freyermouth, F., Fenouillot, F. et al. (2011). Synthesis and properties of poly(butylene succinate): efficiency of different transesterification catalysts. Journal of Polymer Science Part A: Polymer Chemistry 49 (24): 5301–5312.

      62 62 Eslami, H. and Kamal, M. (2013). Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)‐co‐adipate] binary blends and poly(lactic acid)/poly[(butylene succinate)‐co‐adipate]/clay ternary nanocomposites. Journal of Applied Polymer Science 127: 2290–2306.

      63 63 Liu, L., Yu, J., Cheng, L., and Qu, W. (2009). Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing 40 (5): 669–674.

      64 64 Liu, L., Yu, J., Cheng, L., and Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability 94 (1): 90–94.

      65 65 Zhao, P., Liu, W., Wu, Q., and Ren, J. (2010). Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. Journal of Nanomaterials 2010: 8.

      66 66 Xu, J. and Guo, B. (2009). Microbial succinic acid, its polymer poly(butylene succinate), and applications. In: Plastics from Bacteria. Microbiology Monographs, vol. 14 (ed. G.Q. Chen), 347–388. Berlin, Heidelberg: Springer.

      67 67 Ayu, R.S., Khalina, A., Harmaen, A.S. et al. (2018). Effect of modified tapioca starch on mechanical, thermal, and morphological properties of PBS blends for food packaging. Polymers 10 (11): 1187.

      68 68 Kim, H.‐S., Kim, H.‐J., Lee, J.‐W., and Choi, I.‐G. (2006). Biodegradability of bio‐flour filled biodegradable poly(butylene succinate) bio‐composites in natural and compost soil. Polymer Degradation and Stability 91 (5): 1117–1127.

      69 69 Chen, G., Li, S., Jiao, F., and Yuan, Q. (2007). Catalytic dehydration of bioethanol to ethylene over TiO2/γ‐Al2O3 catalysts in microchannel reactors. Catalysis Today 125 (1): 111–119.

      70 70 Torres‐Giner, S., Torres, A., Ferrándiz, M. et al. (2017). Antimicrobial activity of metal cation‐exchanged zeolites and their evaluation on injection‐molded pieces of bio‐based high‐density polyethylene. Journal of Food Safety 37 (4): e12348.

      71 71 Braskem. (2014) I'm green polyethylene. Innovation and differentiation for your product.

      72 72 De Castro Morschbacker, A.L. (2010). A method for the production of one or more olefins, an olefin, and a polymer. US 2010/0069691A1, 18 March 2010.

      73 73 Koopmans, R.J. (2013). Polyolefin‐based plastics from biomass‐derived monomers. In: Bio‐Based Plastics (ed. S. Kabasci), 295–310. Chichester: Wiley.

      74 74 Huang, Y.M.L.H., Huang, X.L., Hu, Y.C., and Hu, Y. (2008). Advances of bio‐ethylene. Chinese Journal of Bioprocess Engineering 6: 1–6.

      75 75 LyondellBasell. (2019) Circulen and Circulen Plus.

      76 76 Robertson, G.L. (2015). Trends in Food Packaging. The Journal of the Instutite of Food Science & Technology.

      77 77 Smith, P.B. (2015). Bio‐based sources for terephthalic acid. In: Green Polymer Chemistry: Biobased Materials and Biocatalysis, vol. 1192 (eds. H.N. Cheng, R.A. Gross and P.B. Smith), 453–469. American Chemical Society.

      78 78 Tsusho, T. (2013). Toyota Tsusho Expanding its New Plant‐Derived Plastic Brand Globio. https://www.toyota-tsusho.com/english/press/detail/130326_001840.html#:∼:text=Mineral%20Water%20bottles%2D-,Toyota%20Tsusho%20Expanding%20its%20New%20Plant%2DDerived%20Plastic%20Brand%20GLOBIO,Suntory%20Natural%20Mineral%20Water%20bottles%2D&text=Since%20Bio%2DPET%20is%20made,the%20atmosphere%20even%20when%20burned. (accessed 09 September 2019).

      79 79 SCG Chemicals. (n.d.) The green plastic “Bio‐PET?”". https://www.scgchemicals.com/en/news-media/feature-story/detail/9 (accessed 09 September 2019).

      80 80 Feldman, R.M.R.G.U., Urano, J., Meinhold, P. et al. (2011). Yeast organism producing isobutanol at a high yield. US Patent 8455239, issued 13 September, 2011.

      81 81 Peters, M.T.J.D., Jenni, M., Manzer, L.E., and Hendon, D.E. (2010). Integrated process to selectively convert renewable isobutanol to p‐xylene. US 12/899285, filed October 6, 2010.

      82 82 The Coca‐Cola Company (2015). Great things come in innovative packaging: an introduction to PlantBottle™ packaging.

      83 83 Siracusa, V. and Rosa, M.D. (2018). Sustainable packaging. In: Sustainable Food Systems from Agriculture to Industry, Chapter 8 (ed. C.M. Galanakis),

Скачать книгу