Sustainable Food Packaging Technology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Sustainable Food Packaging Technology - Группа авторов страница 21

Sustainable Food Packaging Technology - Группа авторов

Скачать книгу

furanoate). Journal of Biotechnology 235: 47–53.

      85 85 Weinberger, S., Canadell, J., Quartinello, F. et al. (2017). Enzymatic degradation of poly(ethylene 2,5‐furanoate) powders and amorphous films. Catalysts 7 (11): 318.

      86 86 Rosenboom, J.‐G., Hohl, D.K., Fleckenstein, P. et al. (2018). Bottle‐grade polyethylene furanoate from ring‐opening polymerisation of cyclic oligomers. Nature Communications 9 (1): 2701.

      87 87 Kasmi, N., Papageorgiou, G.Z., Achilias, D.S., and Bikiaris, D.N. (2018). Solid‐state polymerization of poly(ethylene Furanoate) biobased polyester, II: an efficient and facile method to synthesize high molecular weight polyester appropriate for food packaging applications. Polymers 10 (5): 471.

      88 88 Avantium. (n.d.) FDCA‐From plant based materials to FDCA and PEF. https://www.avantium.com/yxy/products-applications/ (accessed 09 September 2019).

      89 89 Cruz‐Izquierdo, Á., van den Broek, L.A.M., Serra, J.L. et al. (2015). Lipase‐catalyzed synthesis of oligoesters of 2,5‐furandicarboxylic acid with aliphatic diols. Pure and Applied Chemistry 87 (1): 59–69.

      90 90 Jiang, Y., Woortman, A.J.J., Alberda van Ekenstein, G.O.R. et al. (2014). Enzymatic synthesis of biobased polyesters using 2,5‐bis(hydroxymethyl)furan as the building block. Biomacromolecules 15 (7): 2482–2493.

      91 91 Rudnik, E. (2013). Compostable polymer properties and packaging applications. In: Plastic Films in Food Packaging, Chapter 13 (ed. S. Ebnesajjad), 217–248. Oxford: William Andrew Publishing.

      92 92 Pawar, P.A. and Purwar, A.H. (2013). Biodegradable polymers in food packaging. American Jorunal of Engineering Research 2 (5): 151–164.

      93 93 García Ibarra, V., Sendón, R., and Rodríguez‐Bernaldo de Quirós, A. (2016). Antimicrobial food packaging based on biodegradable materials. In: Antimicrobial Food Packaging, Chapter 29 (ed. J. Barros‐Velázquez), 363–384. San Diego, CA: Academic Press.

      94 94 Khalid, S., Yu, L., Feng, M. et al. (2018). Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life 18: 71–79.

      95 95 Chan, C.M., Vandi, L.‐J., Pratt, S. et al. (2018). Composites of wood and biodegradable thermoplastics: a review. Polymer Reviews 58 (3): 444–494.

      96 96 Khan, B.M., Niazi, B.K., Samin, G., and Jahan, Z. (2017). Thermoplastic starch: a possible biodegradable food packaging material—a review. Journal of Food Process Engineering 40 (3): e12447.

      97 97 Li, H., Qi, Y., Zhao, Y. et al. (2019). Starch and its derivatives for paper coatings: a review. Progress in Organic Coatings 135: 213–227.

      98 98 Mohanty, A.K., Misra, M., and Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering 276–277 (1): 1–24.

      99 99 Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers 122: 456–480.

      100 100 Forssell, P.M., Mikkilä, J.M., Moates, G.K., and Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch‐glycerol‐water mixtures, a model for thermoplastic starch. Carbohydrate Polymers 34 (4): 275–282.

      101 101 Gaudin, S., Lourdin, D., Le Botlan, D. et al. (1999). Plasticisation and mobility in starch‐sorbitol films. Journal of Cereal Science 29 (3): 273–284.

      102 102 Ma, X. and Yu, J. (2004). The plastcizers containing amide groups for thermoplastic starch. Carbohydrate Polymers 57 (2): 197–203.

      103 103 Nakamura, S. and Tobolsky, A.V. (1967). Viscoelastic properties of plasticized amylose films. Journal of Applied Polymer Science 11 (8): 1371–1386.

      104 104 Kalichevsky, M.T., Blanshard, J.M.V., and Tokargzuk, P.F. (1993). Effect of water content and sugars on the glass transition of casein and sodium caseinate. International Journal of Food Science & Technology 28 (2): 139–151.

      105 105 Kaseem, M., Hamad, K., and Deri, F. (2012). Thermoplastic starch blends: a review of recent works. Polymer Science, Series A 54 (2): 165–176.

      106 106 Wang, Z.‐F., Peng, Z., Li, S.‐D. et al. (2009). The impact of esterification on the properties of starch/natural rubber composite. Composites Science and Technology 69 (11): 1797–1803.

      107 107 Liu, H., Xie, F., Yu, L. et al. (2009). Thermal processing of starch‐based polymers. Progress in Polymer Science 34 (12): 1348–1368.

      108 108 Dong, Y., Novo, D.C., Mosquera‐Giraldo, L.I. et al. (2019). Conjugation of bile esters to cellulose by olefin cross‐metathesis: a strategy for accessing complex polysaccharide structures. Carbohydrate Polymers 221: 37–47.

      109 109 Chavan, R.B., Rathi, S., Jyothi, V.G.S.S., and Shastri, N.R. (2019). Cellulose based polymers in development of amorphous solid dispersions. Asian Journal of Pharmaceutical Sciences 14 (3): 248–264.

      110 110 Petersen, K., Væggemose Nielsen, P., Bertelsen, G. et al. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology 10 (2): 52–68.

      111 111 Vom Stein, T., Grande, P., Sibilla, F. et al. (2010). Salt‐assisted organic‐acid‐catalyzed depolymerization of cellulose. Green Chemistry 12 (10): 1844–1849.

      112 112 Andrade, R., Skurtys, O., and Osorio, F. (2015). Drop impact of gelatin coating formulated with cellulose nanofibers on banana and eggplant epicarps. LWT Food Science and Technology 61 (2): 422–429.

      113 113 Azevedo, V.M., Silva, E.K., Gonçalves Pereira, C.F. et al. (2015). Whey protein isolate biodegradable films: influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocolloids 43: 252–258.

      114 114 Ahmad, M., Benjakul, S., Sumpavapol, P., and Nirmal, N.P. (2012). Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil. International Journal of Food Microbiology 155 (3): 171–178.

      115 115 Martucci, J.F. and Ruseckaite, R.A. (2010). Biodegradable three‐layer film derived from bovine gelatin. Journal of Food Engineering 99 (3): 377–383.

      116 116 Tongnuanchan, P., Benjakul, S., and Prodpran, T. (2014). Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids 41: 33–43.

      117 117 Martucci, J.F., Gende, L.B., Neira, L.M., and Ruseckaite, R.A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops and Products 71: 205–213.

      118 118 Fakhouri, F.M., Costa, D., Yamashita, F. et al. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers 95 (2): 681–689.

      119 119 Gómez‐Estaca, J., Gómez‐Guillén, M.C., Fernández‐Martín, F., and Montero, P. (2011). Effects of gelatin origin, bovine‐hide and tuna‐skin, on the properties of compound gelatin–chitosan films. Food Hydrocolloids 25 (6): 1461–1469.

      120 120 Yilmaz, M.T., Kesmen, Z., Baykal, B. et al. (2013). A novel method to differentiate bovine and porcine gelatins in food products: nanoUPLC‐ESI‐Q‐TOF‐MSE

Скачать книгу