DNA- and RNA-Based Computing Systems. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу DNA- and RNA-Based Computing Systems - Группа авторов страница 14

DNA- and RNA-Based Computing Systems - Группа авторов

Скачать книгу

style="font-size:15px;">      34 34 Minko, S., Katz, E., Motornov, M. et al. (2011). J. Comput. Theor. Nanosci. 8: 356–364.

      35 35 Tokarev, I., Gopishetty, V., Zhou, J. et al. (2009). ACS Appl. Mater. Interfaces 1: 532–536.

      36 36 Pita, M., Minko, S., and Katz, E. (2009). J. Mater. Sci. ‐ Mater. Med. 20: 457–462.

      37 37 Katz, E. and Minko, S. (2015). Chem. Commun. 51: 3493–3500.

      38 38 Katz, E. (2010). Electroanalysis 22: 744–756.

      39 39 Okhokhonin, A.V., Domanskyi, S., Filipov, Y. et al. (2018). Electroanalysis 30: 426–435.

      40 40 Filipov, Y., Gamella, M., and Katz, E. (2018). Electroanalysis 30: 1281–1286.

      41 41 Gamella, M., Privman, M., Bakshi, S. et al. (2017). ChemPhysChem 18: 1811–1821.

      42 42 Gamella, M., Zakharchenko, A., Guz, N. et al. (2017). Electroanalysis 29: 398–408.

      43 43 Katz, E., Pingarrón, J.M., Mailloux, S. et al. (2015). J. Phys. Chem. Lett. 6: 1340–1347.

      44 44 Katz, E. (2019). Enzyme‐Based Computing Systems. Wiley‐VCH.

      45 45 Watson, J.D. and Crick, F.H.C. (1953). Nature 171: 737–738.

      46 46 Micklos, D. and Freyer, G. (2003). DNA Science: A First Course, 2e. New York: Cold Spring Harbor Laboratory Press.

      47 47 Calladine, C.R., Drew, H., Luisi, B., and Travers, A. (2004). Understanding DNA: The Molecule and How It Works, 3e. San Diego, CA: Elsevier Academic Press.

      48 48 Douglas, K. (2017). DNA Nanoscience. Boca Raton, FL: CRC Press.

      49 49 Fitzgerald‐Hayes, M. and Reichsman, F. (2009). DNA and Biotechnology, 3e. Amsterdam, Imprint: Academic Press: Elsevier.

      50 50 Boneh, D., Dunworth, C., Lipton, R.J., and Sgall, J. (1996). Discrete Appl. Math. 71: 79–94.

      51 51 Rozen, D.E., McGrew, S., and Ellington, A.D. (1996). Curr. Biol. 6: 254–257.

      52 52 Eghdami, H. and Darehmiraki, M. (2012). Artif. Intell. Rev. 38: 223–235.

      53 53 Ogihara, M. and Ray, A. (2000). Nature 403: 143–144.

      54 54 Parker, J. (2003). EMBO Rep. 4: 7–10.

      55 55 Mehrotra, A. (2015). Int. J. Latest Technol. Eng. Manage. Appl. Sci. (IJLTEMAS) 4 (12): 62–67.

      56 56 Adleman, L.M. (1998). Sci. Am. 279 (2): 54–61.

      57 57 Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. (eds.) (1995). The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Chichester: Wiley‐Interscience.

      58 58 Laporte, G. (1992). Eur. J. Oper. Res. 59: 231–247.

      59 59 Applegate, D.L., Bixby, R.E., Chvátal, V., and Cook, W.J. (2006). The Traveling Salesman Problem – A Computational Study. Princeton, NJ: Princeton University Press.

      60 60 Reif, J.H. (1999). Algorithmica 25: 142–175.

      61 61 Kumar, S.N. (2015). Am. J. Nanomater. 3 (1): 1–14.

      62 62 Moe‐Behrens, G.H.‐G. (2013). Comput. Struct. Biotechnol. J. 7 (Art. No.: e201304003).

      63 63 Bonnet, J., Yin, P., Ortiz, M.E. et al. (2013). Science 340: 599–603.

      64 64 Benenson, Y., Gil, B., Ben‐Dor, U. et al. (2004). Nature 429: 423–429.

      65 65 Green, A.A., Kim, J., Ma, D. et al. (2017). Nature 548: 117–121.

      66 66 Qian, L., Winfree, E., and Bruck, J. (2011). Nature 475: 368–372.

      67 67 Macdonald, J., Stefanovic, D., and Stojanovic, M.N. (2008). Sci. Am. 299 (5): 84–91.

      68 68 Stojanovic, M.N. and Stefanovic, D. (2003). Nat. Biotechnol. 21: 1069–1074.

      69 69 Elstner, M. and Schiller, A. (2015). J. Chem. Inf. Model. 55: 1547–1551.

      70 70 Seeman, N.C. (1982). J. Theor. Biol. 99: 237–247.

      71 71 Rothemund, P.W.K. (2006). Nature 440: 297–302.

      72 72 Jun, H., Zhang, F., Shepherd, T. et al. (2019). Sci. Adv. 5 (Art. No.: eaav0655).

      73 73 Hong, F., Zhang, F., Liu, Y., and Yan, H. (2017). Chem. Rev. 117: 12584–12640.

      74 74 Wang, D.F., Fu, Y.M., Yan, J. et al. (2014). Anal. Chem. 86: 1932–1936.

      75 75 Amir, Y., Ben‐Ishay, E., Levner, D. et al. (2014). Nat. Nanotechnol. 9: 353–357.

      76 76 Kogikoski, S. Jr. Paschoalino, W.J., and Kubota, L.T. (2018). TrAC, Trends Anal. Chem. 108 (Art. No.: 88e97).

      77 77 Endo, M. and Sugiyama, H. (2018). Molecules 23 (Art. No.: 1766).

      78 78 Ramsay, G. (1998). Nat. Biotechnol. 16: 40–44.

      79 79 Phillips, A. and Cardelli, L. (2009). J. R. Soc. Interface 6: S419–S436.

      80 80 Spaccasassi, C., Lakin, M.R., and Phillips, A. (2019). ACS Synth. Biol. 8: 1530–1547.

      81 81 Nielsen, A.A.K., Der, B.S., Shin, J. et al. (2016). Science 352 (6281): 53.

      82 82 Panda, D., Molla, K.A., Baig, M.J. et al. (2018). 3 Biotech 8 (Art. No.: 239).

      83 83 Baum, E.B. (1995). Science 268: 584–585.

      84 84 Zhirnov, V., Zadegan, R.M., Sandhu, G.S. et al. (2016). Nat. Mater. 15: 366–370.

      85 85 Ceze, L., Nivala, J., and Strauss, K. (2019). Nat. Rev. Genet. 20: 456–466.

      86 86 Zhang, S.F., Huang, B.B., Song, X.M. et al. (2019). 3 Biotech 9 (Art. No.: 342).

      87 87 Tomek, K.J., Volkel, K., Simpson, A. et al. (2019). ACS Synth. Biol. 8: 1241–1248.

      88 88 Ma, S., Tang, N., and Tian, J. (2012). Curr. Opin. Chem. Biol. 16: 260–267.

      89 89 Behlke, M.A., Berghof‐Jäger, K., Brown, T. et al. (2019). Polymerase Chain Reaction: Theory and Technology. Poole: Caister Academic Press.

      90 90 Garibyan, L. and Avashia, N. (2013). J. Invest. Dermatol. 133 (3), art No. e6.

      91 91 Alves Valones, M.A., Lima Guimarães, R., Cavalcanti Brandão, L.A. et al. (2009). Braz. J. Microbiol. 40 (1): 1–11.

      92 92 Powledge, T.M. (2004). Adv. Physiol. Educ. 28: 44–50.

      93 93 Shendure, J., Balasubramanian, S., Church, G.M. et al. (2017). Nature 550: 345–353.

      94 94 Dolgin, E. (2009). Nature 462: 843–845.

      95 95 Agah, S., Zheng, M., Pasquali, M., and Kolomeisky, A.B. (2016). J. Phys. D: Appl. Phys. 49 (Art. No.: 413001).

      96 96 Stefano, G.B., Wang, F.Z., and Kream, R.M. (2018). Med. Sci. Monit. 24: 1185–1187.

      97 97

Скачать книгу