Genome Engineering for Crop Improvement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genome Engineering for Crop Improvement - Группа авторов страница 38

Genome Engineering for Crop Improvement - Группа авторов

Скачать книгу

Science 315: 1709–1712.

      7 Bhullar, N.K. and Gruissem, W. (2013). Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnology Advances 31: 50–57.

      8 Borg, S., Brinch‐Pedersen, H., Tauris, B. et al. (2012). Wheat ferritins: improving the iron content of the wheat grain. Journal of Cereal Science 56: 204–213.

      9 Borisjuk, N., Kishchenko, O., Eliby, S. et al. (2019). Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing. BioMed Research International 2019: 6216304.

      10 Bortesi, L. and Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33: 41–52.

      11 Brill, E., Van, T.M., White, R.G. et al. (2011). A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiology 157: 40–54.

      12 Butt, H., Jamil, M., Wang, J.Y. et al. (2018). Engineering plant architecture via CRISPR/Cas9‐mediated alteration of strigolactone biosynthesis. BMC Plant Biology 18: 1–9.

      13 Cai, Y., Chen, L., Liu, X. et al. (2015). CRISPR/Cas9‐mediated genome editing in soybean hairy roots. PLoS One 10: e0136064.

      14 Cai, Y., Chen, L., Liu, X. et al. (2018). CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnology Journal 16: 176–185.

      15  Cakmak, I., Ozkan, H., Braun, H.J. et al. (2000). Zinc and iron concentrations in seeds of wild, primitive, and modern wheat. Food and Nutrition Bulletin 21: 401–403.

      16 Capecchi, M.R. (1980). High effciency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–488.

      17 Chahal, G.S. and Gosal, S.S. (2002). Principles and Procedures of Plant Breeding: Biotechnological and Conventional Approaches. Oxford, UK: Alpha Science Int'l Ltd.

      18 Chen, P., Shen, Z., Ming, L. et al. (2018). Genetic basis of variation in Rice seed storage protein (albumin, globulin, Prolamin, and Glutelin) content revealed by genome‐wide association analysis. Frontiers in Plant Science 9: 612.

      19 Chira, S., Gulei, D., Hajitou, A. et al. (2017). CRISPR/Cas9: transcending the reality of genome editing. Molecular Therapy – Nucleic Acids 7: 211–222.

      20 Cho, S.W., Kim, S., Kim, Y. et al. (2014). Analysis of off‐target effects of CRISPR/Cas‐derived RNA‐guided endonucleases and nickases. Genome Research 24: 132–141.

      21 Connorton, J.M., Jones, E.R., Rodríguez‐Ramiro, I. et al. (2017). Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiology 174: 2434–2444.

      22 Crossa, J., Pérez‐Rodríguez, P., Cuevas, J. et al. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science 22: 961–975.

      23 Cruz, D.N. and Khush, G.S. (2000). Rice grain quality evaluation procedures. In: Aromatic Rices (eds. R.K. Singh, U.S. Singh and G.S. Khush), 292. New Delhi: Mohan Primlani for Oxford & IBH Publishing Co. Pvt. Ltd.

      24 Deltcheva, E., Chylinski, K., Sharma, C.M. et al. (2011). CRISPR RNA maturation by trans‐encoded small RNA and host factor RNase III. Nature 471: 602.

      25 Deng, F., Tu, L., Tan, J. et al. (2012). GbPDF1 is involved in cotton fiber initiation via the core cis‐element HDZIP2ATATHB2. Plant Physiology 158: 890–904.

      26 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nature Biotechnology 34: 184.

      27 Du, H., Zeng, X., Zhao, M. et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217: 90–97.

      28 Fang, Y. and Tyler, B.M. (2016). Effcient disruption and replacement of an effector gene in the OomycetePhytophthorasojae using CRISPR/Cas9. Molecular Plant Pathology 17: 127–139.

      29 FAO (Food And Agriculture Organization of The United Nations) Statistics (2014‐15) (available at http://www.fao.org/faostat/en/#data/QC).

      30 FAO (Food And Agriculture Organization of The United Nations) (2019‐20).Commodity markets: Rice. http://www.fao.org/economic/est/est‐commodities/rice/en/ (accessed 17 July 2020.

      31 FAO (Food And Agriculture Organization of The United Nations) Statistics (2017‐18) (available at http://www.fao.org/faostat/en/#data/QC).

      32 Feng, C., Yuan, J., Wang, R. et al. (2016). Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics 43: 37–43.

      33 Ferguson, D.O. and Alt, F.W. (2001). DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20: 5572.

      34 Ferrero, A. (2004). Constraints and opportunities for the sustainable development of rice‐based production systems in Europe.The International Conference on Sustainable Rice Systems, Rome.

      35  Fiaz, S., Ahmad, S., Noor, M.A. et al. (2019). Applications of the CRISPR/Cas9 system for Rice grain quality improvement: perspectives and opportunities. International Journal of Molecular Sciences 20: 888.

      36 Fiaz, S., Jiao, G., Sheng, Z. et al. (2019). Analysis of genomic regions governing cooking and eating quality traits using a recombinant inbred population in Rice (Oryza sativa L.). International Journal of Agriculture and Biology 22: 611–619.

      37 Gil‐Humanes, J., Pistón, F., Barro, F., and Rosell, C.M. (2014). The shutdown of celiac disease‐related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over‐mixing. PLoS One 9 (3): e91931.

      38 Godfray, H.C.J., Beddington, J.R., Crute, I.R. et al. (2010). Food security: the challenge of feeding 9 billion people. Science 327: 812–818.

      39 Guan, X., Song, Q., and Chen, Z.J. (2014). Polyploidy and small RNA regulation of cotton fiber development. Trends in Plant Science 19: 516–528.

      40 Hao, J., Tu, L., Hu, H. et al. (2012). GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. Journal of Experimental Botany 63: 6267–6281.

      41 Harmer, S., Orford, S., and Timmis, J. (2002). Characterisation of six a‐expansin genes in Gossypium hirsutum (upland cotton). Molecular Genetics and Genomics 268: 1–9.

      42 Hartung, F. and Schiemann, J. (2014). Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant Journal 78: 742–752.

      43 Heigwer, F., Kerr, G., and Boutros, M. (2014). E‐CRISP: fast CRISPR target site identification. Nature Methods 11: 122.

      44 Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. (2013). DNA targeting specificity of RNA‐guided Cas9 nucleases. Nature Biotechnology 31: 827.

      45 Calyxt Inc (2019). First Commercial Sale of Calyxt High Oleic Soybean Oil. Minneapolis‐St. Paul: Calyxt Inc.

      46 Innes, R.W., Ameline‐Torregrosa, C., Ashfield, T. et al. (2008). Differential accumulation of retroelements and diversification of NB‐LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiology 148:

Скачать книгу