Genome Engineering for Crop Improvement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genome Engineering for Crop Improvement - Группа авторов страница 40

Genome Engineering for Crop Improvement - Группа авторов

Скачать книгу

for designing CRISPR/Cas guide RNAs. Biology Direct 10: 4.

      87 Pourcel, C., Salvignol, G., and Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653–663.

      88 Prykhozhij, S.V., Rajan, V., Gaston, D., and Berman, J.N. (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10: e0119372.

      89 Puchta, H. (2005). The repair of double‐strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56: 1–14.

      90 Qi, W., Zhu, T., Tian, Z. et al. (2016). High‐efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA processing system‐based strategy in maize. BMC Biotechnology 16: 58.

      91  Qin, Y.M. and Zhu, Y.X. (2011). How cotton fibers elongate: a tale of linear cell growth mode. Current Opinion in Plant Biology 14: 106–111.

      92 Quétier, F. (2016). The CRISPR‐Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Science 242: 65–76.

      93 Regina, A., Bird, A., Topping, D. et al. (2006). High‐amylose wheat generated by RNA interference improves indices of large‐bowel health in rats. Proceedings of the National Academy of Sciences 103: 3546–3551.

      94 Ruan, Y. (2007). Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single‐celled cotton fibre. Functional Plant Biology 34: 1–10.

      95 Sabouri, A., Rabiei, B., Toorchi, M. et al. (2012). Mapping quantitative trait loci (QTL) associated with cooking quality in rice (Oryza sativa. L). Australian Journal of Crop Science 6: 808.

      96 Sánchez‐León, S., Gil‐Humanes, J., Ozuna, C.V. et al. (2018). Low‐gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16: 902–910.

      97 Schaart, J.G., Van De Wiel, C.C.M., Lotz, L.A.P., and Smulders, M.J.M. (2016). Opportunities for products of new plant breeding techniques. Trends in Plant Science 21: 438–449.

      98 Scheben, A., Wolter, F., Batley, J. et al. (2017). Towards CRISPR/Cas crops–bringing together and genome editing. New Phytology 216: 682–698.

      99 Scherf, K.A., Koehler, P., and Wieser, H. (2016). Gluten and wheat sensitivities an overview. Journal of Cereal Science 67: 2–11.

      100 Schmutz, J., Cannon, S.B., Schlueter, J. et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183.

      101 Schnable, P.S., Ware, D., Fulton, R.S. et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.

      102 Schubert, D. and Williams, D. (2006). Cisgenic; as a product designation. Nature Biotechnology 24: 1327.

      103 Sestili, F., Janni, M., Doherty, A. et al. (2010). Increasing the amylose content of durum wheat through silencing of the SBEIIagenes. BMC Plant Biology 10: 144.

      104 Shan, Q., Wang, Y., Li, J., and Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9: 2395–2410.

      105 Shan, Q., Wang, Y., Li, J., and Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9: 2395.

      106 Shen, L., Li, J., Fu, Y. et al. (2017). Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system. Chinese Journal of Rice Science 31: 223–231.

      107 Shewry, P.R. and Halford, N.G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany 53: 947–958.

      108 Shi, J., Gao, H., Wang, H. et al. (2017). ARGOS8 variants generated by CRISPR–Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15: 207–216.

      109 Shu, Q.Y., Forster, B., and Nakagawa, H. (2012). Principles and Applications of Plant Mutation Breeding, in Plant Mutation Breeding and Biotechnology (eds. Q.Y. Shu, B. Forster and H. Nakagawa), 301–326. Wallingford: CABI.

      110 Si, L., Chen, J., Huang, X. et al. (2016). OsSPL13 controls grain size in cultivated rice. Nature Genetics 48: 447–456.

      111 Sikora, P., Chawade, A., Larsson, M. et al. (2011). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics 2011: 314829.

      112  Smidansky, E.D., Meyer, F.D., Blakeslee, B. et al. (2007). Expression of a modified ADP‐glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225: 965–976.

      113 Splitter, J. (2019). The Latest Gene‐Edited Food Is a Soybean Oil that Comes with Zero Trans Fats. New York: Forbes.

      114 Stemmer, M., Thumberger, T., Del Sol Keyer, M. et al. (2015). CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10: e0124633.

      115 Stewart, C.N., Adang, M.J., All, J.N. et al. (1996). Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic bacillus thuringiensiscryIAc gene. Plant Physiology 112: 121–129.

      116 Sui, X., Zhao, Y., Wang, S. et al. (2012). Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. Journal of Agriculture and Biotechnology 20: 766–773.

      117 Sundström, J.F., Albihn, A., Boqvist, S. et al. (2014). Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases–a risk analysis in three economic and climate settings. Food Security 6: 201–215.

      118 Suo, J., Liang, X., Pu, L. et al. (2003). Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochimtry and Biophysics Acta 1630: 25–34.

      119 Tan, J., Tu, L., Deng, F. et al. (2012). Exogenous jasmonic acid inhibits cotton fiber elongation. Journal of Plant Growth Regulation 31: 599–605.

      120 Tang, F., Yang, S., Liu, J., and Zhu, H. (2016). Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin‐like protein but not the one previously reported. Plant Physiology 170: 26–32.

      121 Terada, R., Nakajima, M., Isshiki, M. et al. (2000). Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice. Plant Cell Physiology 41: 881–888.

      122 United Nations, Department of Economic and Social Affairs, Population Division (2017). The Impact of Population Momentum on Future Population Growth. Population Facts. https://www.un.org/en/development/desa/population/publications/factsheets/index.shtml (accessed 17 July 2020.

      123 Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R. (2013). RNA‐guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics 3: 2233–2238.

      124 Waltz, E. (2018). With a free pass, CRISPR‐edited plants reach market in record time. Nature Biotechnology 36: 6–7.

      125 Wang, S., Li, S., Liu, Q. et al. (2015). The OsSPL16‐GW7 regulatory module determines grain shape and simultaneously

Скачать книгу