Genome Engineering for Crop Improvement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genome Engineering for Crop Improvement - Группа авторов страница 39

Genome Engineering for Crop Improvement - Группа авторов

Скачать книгу

Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169: 5429–5433.

      48 Jasin, M. (1996). Genetic manipulation of genomes with rare‐cutting donucleases. Trends in Genetics 12: 224–228.

      49 Jiang, Y., Guo, W., Zhu, H. et al. (2012). Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnology Journal 10: 301–312.

      50 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.

      51 John, M.E. and Crow, L.J. (1992). Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proceedings of the National Academy of Sciences 89: 5769–5773.

      52 Jones, J.D., Witek, K., Verweij, W. et al. (2014). Elevating crop disease resistance with cloned genes. Philosophical Transactions of the Royal Society: Biological Sciences 369: 20130087.

      53 Kang, G., Xu, W., Liu, G. et al. (2013). Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum L.) endosperm. Genome 56: 115–122.

      54  Kim, H.J., Tang, Y., Moon, H.S. et al. (2013). Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genomics 14: 889.

      55 Kim, M., Song, J.T., Bilyeu, K.D., and Lee, J.D. (2015). A new low linolenic acid allele of GmFAD3A gene in soybean PE1690. Molecular Breeding 35: 155.

      56 Komor, A.C., Kim, Y.B., Packer, M.S. et al. (2016). Programmable editing of a target base in genomic DNA without doubles tranded DNA cleavage. Nature 533: 420.

      57 Kulkarni, K.P., Patil, G., Valliyodan, B. et al. (2018). Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome 61: 217–222.

      58 Lau, W.C., Rafii, M.Y., Ismail, M.R. et al. (2015). Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Frontiers in Plant Science 6: 832.

      59 Li, J., Xiao, J., Grandillo, S. et al. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (Oryza sativa L.) and African (Oryzaglaberrima S.) rice. Genome 47: 697–704.

      60 Li, S., Li, J., Wang, N. et al. (2007). Inheritance and expression of copies of transgenes 1Dx5 and 1Ax1 in elite wheat (Triticumaestivum L.) varieties transferred from transgenic wheat through conventional crossing. ActaBiochimicaetBiophysicaSinica 39: 377–383.

      61 Li, D.D., Ruan, X.M., Zhang, J. et al. (2013). Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fiber development. New Phytology 199: 695–707.

      62 Li, Z., Liu, Z.B., Xing, A. et al. (2015). Cas9‐guide RNA directed genome editing in soybean. Plant Physiology 169: 960–970.

      63 Li, Q., Li, L., Liu, Y. et al. (2017). Influence of TaGW2‐6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Science 263: 226–235.

      64 Li, J., Zhang, H., Si, X. et al. (2017). Generation of thermosensitive male‐sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics 44: 465.

      65 Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63–68.

      66 Liang, Z., Chen, K., Li, T. et al. (2017). Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications 8: 1–5.

      67 Liu, G., Wu, Y., Xu, M. et al. (2016). Virus‐induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. International Journal of Molecular Sciences 17: 1557.

      68 Liu, J., Wu, X., Yao, X. et al. (2018). Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences 115: 11327–11332.

      69 Lloyd, A.H., Wang, D., and Timmis, J.N. (2012). Single molecule PCR reveals similar patterns of non‐homologous DSB repair in tobacco and Arabidopsis. PLoSOne 7 (2): e32255.

      70 Loguercio, L.L., Zhang, J.Q., and Wilkins, T.A. (1999). Differential regulation of six novel MYB‐domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Molecular Genomics and Genetics 261: 660–671.

      71 Lou, J., Chen, L., Yue, G. et al. (2009). QTL mapping of grain quality traits in rice. Journal of Cereal Science 50: 145–151.

      72  Ma, X., Zhang, Q., Zhu, Q. et al. (2015). A robust CRISPR/Cas9 system for convenient, high‐efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8: 1274–1284.

      73 Machado, A., Wu, Y., Yang, Y. et al. (2009). The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant Journal 59: 52–62.

      74 Manik, N. and Ravikesavan, R. (2009). Emerging trends in enhancement of cotton fiber productivity and quality using functional genomics tools. Biotechnology and Molecular Biology Reviews 4: 11–28.

      75 Meenu, M. and Xu, B. (2018). A critical review on anti‐diabetic and anti‐obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition 59 (18): 3019–3031.

      76 Montague, T.G., Cruz, J.M., Gagnon, J.A. et al. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42: 401–407.

      77 Morgante, M. (2006). Plant genome organisation and diversity: the year of the junk. Current Opinion in Biotechnology 17: 168–173.

      78 Nalam, V.J., Alam, S., Keereetaweep, J. et al. (2015). Facilitation of Fusariumgraminearum infection by 9‐lipoxygenases in Arabidopsis and wheat. Molecular Plant‐Microbe Interactions 28: 1142–1152.

      79 Nester, E.W. (2014). Agrobacterium: nature's genetic engineer. Frontiers in Plant Science 5: 730.

      80 Nordin, Y. and Lantbruksakademien, K.S.O. (2008). Golden Rice and Other Biofortified Food Crops for Developing Countries: Challenges and Potential. Rome, Italy: FAO.

      81 Pacher, M. and Puchta, H. (2017). From classical mutagenesis to nuclease based breeding directing natural DNA repair for a natural end‐product. Plant Journal 90: 819–833.

      82 Payne, P.I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread‐making quality. Annual Review of Plant Physiology and Plant Molecular Biology 38: 141–153.

      83 Pegoraro, C., da Mertz, L.M., Maia, L.C. et al. (2011). Importance of heat shock proteins in maize. Journal of Crop Science and Biotechnology 14: 85–95.

      84 Peng, B., Kong, H., Li, Y. et al. (2014). OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications 5: 4847.

      85 Pham, A.T., Lee, J.D., Shannon, J.G., and Bilyeu, K.D. (2011). A novel FAD2‐1 a allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theoretical and Applied Genetics 123: 793–802.

      86 Pliatsika,

Скачать книгу