Metal Oxide Nanocomposites. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Metal Oxide Nanocomposites - Группа авторов страница 16

Metal Oxide Nanocomposites - Группа авторов

Скачать книгу

of selenium inside carbon nanotubes. Structural characterization by X-ray diffraction and X-ray absorption spectroscopy. J. Non-Cryst. Solids, 352, 2, 99–108, 2006.

      66. Baaziz, W., Begin-Colin, S., Pichon, B.P., Florea, I., Ersen, O., Zafeiratos, S., Barbosa, R., Begin, D., Pham-Huu, C., High-density monodispersed cobalt nanoparticles filled into multiwalled carbon nanotubes. Chem. Mater., 24, 9, 1549–1551, 2012.

      67. Nguyen, T.T. and Serp, P., Confinement of metal nanoparticles in carbon nanotubes. ChemCatChem, 5, 12, 3595–3603, 2013.

      68. Kopyl, S.V.B., Bdikin, I., Maiorov, M., Sousa, A.C.M., Filling carbon nanotubes with magnetic particles. J. Mater. Chem. C, 1, 16, 2860–2866, 2013.

      69. Chen, B., Ma, Q., Tan, C., Lim, T.T., Huang, L., Zhang, H., Carbon-based sorbents with three-dimensional architectures for water remediation. Small, 11, 27, 3319–3336, 2015.

      70. Gupta, V.K., Moradi, O., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf, A.S.H., Goodarzi, M., Garshasbi, A., Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification. Crit. Rev. Environ. Sci. Technol., 46, 2, 93–118, 2016.

      71. Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., Bhatnagar, A., Role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 306, 1116–1137, 2016.

      72. Qu, L.L., Liu, Y.Y., Liu, M.K., Yang, G.H., Li, D.W., Li, H.T., Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics. ACS Appl. Mater. Interfaces, 8, 41, 28180–28186, 2016.

      73. Kanhere, P. and Chen, Z., A review on visible light active perovskite-based photocatalysts. Molecules, 19, 12, 19995–20022, 2014.

      74. Zhu, J. and Zäch, M., Nanostructured materials for photocatalytic hydrogen production. Curr. Opin. Colloid Interface Sci., 14, 4, 260–269, 2009.

      75. Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38, 1972.

      76. Zhou, M., Yu, J., Liu, S., Zhai, P., Jiang, L., Effects of calcination temperatures on photocatalytic activity of SnO 2/TiO 2 composite films prepared by an EPD method. J. Hazard. Mater., 154, 1, 1141–1148, 2008.

      77. Hattori, A., Tokihisa, Y., Tada, H., Ito, S., Acceleration of Oxidations and Retardation of Reductions in Photocatalysis of a TiO2/SnO2 Bilayer-Type Catalyst. J. Electrochem. Soc., 147, 6, 2279–2283, 2000.

      79. Shi, J.-W., Zheng, J.-T., Hu, Y., Zhao, Y.-C., Influence of Fe 3+ and Ho 3+ co-doping on the photocatalytic activity of TiO 2. Mater. Chem. Phys., 106, 2, 247–249, 2007.

      80. Shi, J.-w., Preparation of Fe (III) and Ho (III) co-doped TiO 2 films loaded on activated carbon fibers and their photocatalytic activities. Chem. Eng. J., 151, 1, 241–246, 2009.

      81. Xu, L., Hu, Y.-L., Pelligra, C., Chen, C.-H., Jin, L., Huang, H., Sithambaram, S., Aindow, M., Joesten, R., Suib, S.L., ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater., 21, 13, 2875–2885, 2009.

      82. Liu, L., Liu, H., Zhao, Y.-P., Wang, Y., Duan, Y., Gao, G., Ge, M., Chen, W., Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ. Sci. Technol., 42, 7, 2342–2348, 2008.

      83. Bunn, C., The lattice-dimensions of zinc oxide. Proc. Phys. Soc., 47, 5, 835, 1935.

      84. Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J.T., Liang, Y., Cui, Y., Dai, H., Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 132, 40, 13978–13980, 2010.

      85. Fujishima, A., Rao, T.N., Tryk, D.A., Titanium dioxide photocatalysis. J. Photoch. Photobio. C, 1, 1, 1–21, 2000.

      86. Jiang, Z., Yang, F., Yang, G., Kong, L., Jones, M.O., Xiao, T., Edwards, P.P., The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. J. Photochem. Photobiol. A: Chem., 212, 1, 8–13, 2010.

      87. Nakata, K., Udagawa, K., Tryk, D.A., Ochiai, T., Nishimoto, S., Sakai, H., Murakami, T., Abe, M., Fujishima, A., Fabrication of micro-patterned TiO 2 thin films incorporating Ag nanoparticles. Mater. Lett., 63, 18, 1628–1630, 2009.

      88. Nishimoto, S., Kubo, A., Nohara, K., Zhang, X., Taneichi, N., Okui, T., Liu, Z., Nakata, K., Sakai, H., Murakami, T., TiO 2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing. Appl. Surf. Sci., 255, 12, 6221–6225, 2009.

      89. Rastogi, R. and Sharma, S., 2-Aminobenzimidazoles in Organic Syntheses. Synthesis, 861, 1983.

      90. Berton, G.W., Selective monoacetylation of unsymmetrical diols catalyzed by silica gel-supported sodium hydrogen sulfate. J. Org. Chem., 62, 8952–8954, 1997.

      91. Heravi, M.M. and Motamedi, R., Rapid synthesis of some new propanol derivatives analogous to fluconazole under microwave irradiation in solventless system. Heterocycl. Commun., 11, 19–22, 2005.

      93. Kundu, S., A facile route for the formation of shape-selective ZnO nanoarchitectures with superior photo-catalytic activity. Colloids Surf. A: Physiochem. Eng. Asp., 446, 199–212, 2014.

      94. Suresh, S., Karthikeyan, S., Jayamoorthy, K., Spectral investigations to the effect of bulk and nano ZnO on peanut plant leaves. Karbala Int. J. Mod. Sci., 2, 2, 69–77, 2016.

      95. Pour, Z.S. and Ghaemy, M., Fabrication and characterization of superparamagnetic nanocomposites based on epoxy resin and surface-modified γ-Fe 2 O 3 by epoxide functionalization. J. Mater. Sci., 49, 4191–4201, 2014.

      96. Escher, W., Brunschwiler, T., Michel, B., and Poulikakos, D. Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips. ASME. J. Heat Transfer., 132, 081402, 2010

      97. Escher, W., Michel, B., Poulikakos, D., Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics. Int. J. Heat Mass Transf., 52, 1421–1430, 2009.

      98. Tuckerman, D.B. and Pease, R.F.W., IIIB-8 implications of high performance heat sinking for electron devices. IEEE Trans. Electron Devices, 28, 1230–1231, 1981.

      99. Wang, Zhou, Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf., 46, 14, 2665–2672, 2003.

      100. Keblinski, Phillpot, Choi, Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf., 45, 4, 855–863, 2002.

      101.

Скачать книгу