Metal Oxide Nanocomposites. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Metal Oxide Nanocomposites - Группа авторов страница 17

Metal Oxide Nanocomposites - Группа авторов

Скачать книгу

Au/Pt and Au/Pd nanoparticles using the microwave-polyol method. Res. Chem. Intermed., 32, 103, 2006.

      102. Zhao, P.X., Li, N., Astruc, D., State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 257, 638–665, 2013.

      103. Sun, Y.G. and Xia, Y.N., Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176–2179, 2002.

      104. Lee, W., Scholz, R., Nielsch, K., Gösele, U., A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes. Angew. Chem., 117, 6204–6208, 2005.

      105. Davar, F., Loghman-Estarki, M.R., Salavati-Niasari, M., Mazaheri, M., Controllable synthesis of covellite nanoparticles via thermal decomposition method. J. Clust. Sci., 27, 593–603, 2016.

      106. Wang, H., Xu, J.Z., Zhu, J.J., Chen, H.Y., Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth, 244, 88–94, 2002.

      108. Sreeju, N., Rufus, A., Philip, D., Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J. Mol. Liq., 221, 1008–1021, 2016.

      109. Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W., Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A, 372, 172–176, 2010.

      110. Weare, W.W., Reed, S.M., Warner, M.G., Hutchison, J.E., Improved synthesis of small (d core≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc., 122, 12890–12891, 2000.

      111. Schmid, G., Pfeil, R., Boese, R., Bandermann, F., Meyer, S., Calis, G.H.M., van der Velden, Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe, J.W.A., Chem. Ber., 114, 3634–3642, 1981.

      112. Prasher, Bhattacharya, Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett., 94, 2, 025901, 2005.

      113. Evans, Fish, Keblinski, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett., 88, 9, 093116–3, 2006.

      114. Keblinski, Prasher, Eapen, Thermal conductance of nanofluids: is the controversy over? J. Nanopart. Res., 10, 7, 1089–1097, 2008.

      115. Diallo, S.O., Pore-size dependence and characteristics of water diffusion in slitlike micropores. Phys. Rev. E, 92, 012312, 2015.

      116. Qin, Z. and Buehler, M.J., Nonlinear viscous water at nanoporous two-dimensional interfaces resists high-speed flow through cooperativity. Nano Lett., 15, 3939–44, 2015.

      117. Osti, N., Coté, A., Mamontov, E., Ramirez-Cuesta, A., Wesolowski, D., Diallo, S., Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering. Chem. Phys., 465, 1–8, 2016.

      118. Turanov, A. and Tolmachev, Y.V., Heat-and mass-transport in aqueous silica nanofluids. Heat Mass Transfer, 45, 1583–8, 2009.

      119. Khan, S.H., Matei, G., Patil, S., Hoffmann, P.M., Dynamic solidification in nanoconfined water films. Phys. Rev. Lett., 105, 106101, 2010.

      120. Vasu, V., Krishna, K.R., Kumar, A.C.S., Analytical prediction of thermophysical properties of fluids embedded with nanostructured materials. Int. J. Nanopart., 1, 1, 32–49, 2008.

      121. Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., Keblinski, P., Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett., 89, 14, 143119-1–143119-3, 2006.

      122. Prasher, R., Phelan, P.E., Bhattacharya, P., Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett., 6, 7, 1529–1534, 2006.

      124. Ghaly, E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V.V., Production, characterization and treatment of textile effluents: a critical review. J. Chem. Eng. Process. Technol., 5, 1, 2014.

      125. Malik, R., Rana, P.S., Tomer, V.K., Chaudhary, V., Nehra, S.P., Duhan, S., Visible light-driven mesoporous Au-TiO2/SiO2 photocatalysts for advanced oxidation process. Ceram. Int., 42, 10892–10901, 2016.

      126. Khan, Z., Chetia, T.R., Vardhaman, A.K., Barpuzary, D., Sastri, C.V., Qureshi, M., Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of grapheme oxide. RSC Adv., 2, 12122, 2012.

      127. Malik, R., Tomer, V.K., Chaudhary, V., Dahiya, M.S., Nehra, S.P., Rana, P.S., Duhan, S., Microflower assembly of porous Au loaded TiO2/SnO2 nanohybrids as highly efficient visible light photocatalyst and selective VOCs sensor. ChemistrySelect (Wiley), 1, 3247–3258, 2016.

      128. Giwa, P.O., Nkeonye, K.A., Bello, K.A., Kolawole, Photocatalytic decolourization and degradation of basic blue 41 using TiO2 nanoparticles. J. Environ. Prot., 3, 1, 2012.

      129. Buthelezi, S.P., Olaniran, A.O., Pillay, B., Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17, 14260, 2012.

      130. Pereira, L, and Alves M., Dyes—environmental impact and remediation. Environmental protection strategies for sustainable development. Springer, Dordrecht, 111–162, 2012.

      131. Tahir, U., Yasmin, A., Khan, U.H., Phytoremediation: potential flora for synthetic dyestuff metabolism. J. King Saud. Univ. Sci., 28, 119–130, 2016.

      132. Hunger, K., Industrial dyes: chemistry, properties, applications, Wiley, Frankfurt, 2008.

      133. Needles, H.L., Textile fibers, dyes, finishes and processes, Noyes, Jersey, 1986.

      134. Singh, B. and Sharma, N., Mechanistic implications of plastic degradation. Polym. Degrad. Stab., 93, 561, 2008.

      135. Duhan, S., Dehiya, B.S., Tomer, V., Microstructure and photo-catalytic dye degradation of silver–silica nano composites synthesized by sol–gel method. Adv. Mater. Lett., 4, 317–322, 2013.

      136. Duhan, S. and Tomer, V.K., Advance Electronics: Looking Beyond Silicon, in: Advanced Energy Materials, pp. 295–326, Wiley-Scrivener, U.S.A, 2014.

      137. Tomer, V.K., Thangaraj, N., Gahlot, S., Kailasam, K., Cubic mesoporous Ag@ CN: A high performance humidity sensor. Nanoscale, 8, 19794–19803, 2016.

      138. Malik, R., Tomer, V.K., Chaudhary, V., Dahiya, M.S., Nehra, S.P., Rana, P.S., Duhan, S., Ordered mesoporous In-(TiO2/WO3) nanohybrid: An ultrasensitive n-butanol sensor. Sens. Actuators B: Chem., 239, 364–373, 2017.

      140.

Скачать книгу