Metal Oxide Nanocomposites. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Metal Oxide Nanocomposites - Группа авторов страница 18

Metal Oxide Nanocomposites - Группа авторов

Скачать книгу

V.K. and Duhan, S., Nano titania loaded mesoporous silica: preparation and application as high performance humidity sensor. Sens. Actuators B: Chem., 220, 192–200, 2015.

      141. Naderi, M. and Danesh-Shahraki, A., Nano fertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci., 5, 19, 2229–2232, 2013.

      142. Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W., Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot., 35, 64–70, 2012.

      143. Nasiri, A., Shariaty-Niasar, M.S.-N., Akbari, Z., Synthesis of LDPE/nano TiO2nanocomposite for 792 packaging applications. Int. J. Nanosci. Nanotechnol., 8, 165–170, 2012.

      144. Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., Toniolo, R., Effect of TiO2 photocatalytic activity in a HDPE based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chem., 138, 1633–1640, 2013.

      145. Luo, Z., Qin, Y., Ye, Q., Effect of nano-TiO2-LDPE packaging on microbiological and physicochemical quality of Pacific white shrimp during chilled storage. Int. J. Food Sci. Technol., 50, 1567–1573, 2015.

      146. Cerrada, M.L., Serrano, C., Sánchez-Chaves, M., Fernández-García, M., Fernández-Martín, F., de Andrés, A., 620Riobóo, R.J.J., Kubacka, A., Ferrer, M., Fernández-García, M., Self-sterilized EVOH-TiO2621 nanocomposites: Interface effects on biocidal properties. Adv. Funct. Mater., 18, 1949–1960, 2008.

      147. Kim, D.K., Mikhaylova, M., Wang, F.H., Kehr, J., Bjelke, B., Zhang, Y., Tsakalakos, T., Muhammed, M., Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater., 15, 4343–4351, 2003.

      148. Wang, W. and Zhang, Z., Hydrothermal synthesis and characterization of carbohydrate microspheres coated with magnetic nanoparticles. J. Dispers. Sci. Technol., 28, 557–561, 2007.

      149. Haldorai, Y. and Shim, J.-J., Multifunctional chitosan copper oxide hybrid material: photocatalytic and antibacterial activities. Int. J. Photoenergy, 245646, 2013.

      150. Yang, Y., Li, Y.-Q., Fu, S.-Y., Xiao, H.-M., Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting. J. Phys. Chem. C, 112, 10553–10558, 2008.

      151. Son, D.-I., Park, D.-H., Choi, W.K., Cho, S.-H., Kim, W.-T., Kim, T.W., Carrier transport inflexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methac-rylate) polymer layer. Nanotechnology, 20, 195203, 2009.

      153. Jo, Y.J., Choi, E.Y., Choi, N.W., Kim, C.K., Antibacterial and hydrophilic characteristics of poly(ether sulfone) composite membranes containing zinc oxide nanoparticles grafted with hydrophilic polymers. Ind. Eng. Chem. Res., 55, 7801–7809, 2016.

      154. Kwak, S.-Y., Kim, S.H., Kim, S.S., Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling: preparation and characterization of TiO2nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol., 35, 2388–2394, 2001.

      155. Wu, L. and Ritchie, S., Enhanced dechlorination of trichloroethylene by membrane-sup-ported Pd-coated iron nanoparticles. Environ. Prog., 27, 218–224, 2008.

      156. Teli, S.B., Molina, S., Sotto, A., Calvo, E.G.A., Abajob, J.D., Fouling resistant poly-sulfone–PANI/TiO2 ultrafiltration nanocomposite membranes. Ind. Eng. Chem. Res., 52, 9470–9479, 2013.

      157. Yu, Z., Liu, X., Zhao, F., Liang, X., Tian, Y., Fabrication of a low-cost nano-SiO2/PVCcomposite ultrafiltration membrane and its antifouling performance. J. Appl. Polym. Sci., 132, 1–11, 2015.

      158. Feng, J., Chen, J., Wang, N., Li, J., Shi, J., Yan, W., Enhanced adsorption capacityof polypyrrole/TiO2 composite modified by carboxylic acid with hydroxyl group. RSC Adv., 6, 42572–42580, 2016.

      159. Anand, K., Singh, O., Singh, M.P., Kaur, J., Singh, R.C., Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B, 195, 409–415, 2014.

      160. Gusain, Rashi, et al. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 272, 102009, 2019.

      161. Askari, H., et al., Piezoelectric and triboelectric nanogenerators: Trends and impacts. Nano Today, 22, 10–13, 2018.

      162. Wang, Z.L., Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire. Arrays. Science, 312, 242–246, 2006.

      1 * Corresponding author: [email protected]

      Introduction to Nanocomposites

       Ritu Malik1, Vijay K. Tomer2*, Vandna Chaudhary3, Nirav Joshi4 and Surender Duhan1,2†

       1Department of Physics, D.C.R. University of Science & Technology, Murthal (Sonepat) Haryana, India

       2Department of Materials Science & Nanotechnology, D.C.R. University of Science & Technology, Murthal (Sonepat) Haryana, India

       3Center of Excellence for Energy and Environment Studies, D.C.R. University of Science & Technology, Murthal (Sonepat) Haryana, India

       4São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil

       Abstract

      Nanocomposite is a special class of material that has emerged as potential candidate to solve technological problems in the engineering domain since long. These materials started to capture the industrial attention with the introduction of their special class of polymeric-based composites. From that point forward, composite materials have turned out to be basic building materials and are outlined and made for different applications including car segments, sporting products, aviation parts, buyer merchandise, and in the marine and oil ventures. The growth in composite usage was attributed to the enhanced product performance and global competition for lightweight components. Interestingly, composite materials could possibly replace steel and aluminum, in fabricating industrial products with their better performance. This replacement of steel and aluminium components with composite materials can fabricate goods which are 60-80% and 20-50% of original weight, respectively. In current scenario, the composites are obviously materials of choice for almost every engineering application. In this chapter, a detailed discussion regarding the types, properties, processing, applications and advantages/disadvantages of composites has been presented in great depth and broadness.

      Keywords: Composites, fillers, fibers, reinforcements, matrix

      A composite material is obtained by merging two or more materials (wood, minerals, plastic

Скачать книгу