Metal Oxide Nanocomposites. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Metal Oxide Nanocomposites - Группа авторов страница 23

Metal Oxide Nanocomposites - Группа авторов

Скачать книгу

to produce high specific strength composite when used as reinforcement in a plastic matrix.

      4 d) its chemical inertness, which makes it extremely useful in corrosive environments.

      2.6.2 Carbon Fiber-Reinforced Polymer (CFRP) Composites

      Carbon is a high-performance fiber material which is often used as reinforcement in advanced polymer-matrix composites. The reasons being that:

      1 a) The carbon fibers hold maximum specific modulus and strength among all other reinforcing fiber materials.

      2 b) They can retain their tensile modulus and strength at elevated temperatures.

      3 c) The carbon fibers are not at all affected by moisture, acids, and bases at room temperature.

      4 d) Due to their exciting physical and mechanical characteristics, the composite thus formed tends to have specific engineered properties.

      5 e) Inexpensive and cost effective manufacturing processes for fiber and composite have been developed.

      Carbon fibers are not purely crystalline, but they possess both graphitic and non-crystalline regions. These non-crystalline regions are composed of the 3-D ordered arrangement of hexagonal carbon networks which is also characteristic of graphite. The techniques to produce carbon fibers are relatively complex. Rayon, polyacrylonitrile (PAN), and pitch are used as organic precursor materials for producing carbon fibers [3]. The processing techniques are different for different precursors and also affect the resultant fiber characteristics. The carbon fibers can be classified on the basis of tensile modulus; which is further divided into four subclasses as standard, intermediate, high, and ultrahigh moduli. The diameters of both continuous and chopped fibers normally range between 4 and 10 μm. The carbon fibers are coated with a protective epoxy size which improves its adhesion with the polymer matrix. Carbon-reinforced polymer composites are utilized in sports and recreational equipment, pressure vessels, helicopters, aircraft (military and commercial) structural components and filament-wound rocket motor cases.

      2.6.3 Aramid Fiber-Reinforced Polymer Composites

      Processing is the science which involves the transformation of shape of materials. Since the composites involve two or more materials, their processing techniques are different than those for metals [12]. There are a number of processing techniques available to develop different kind of resin and reinforcements. Therefore, the correct processing technique/conditions should be employed to meet the performance, production rate, and cost requirements of an application.

      1 a) Forming: In this step, as per the requirements, the feedstock is transformed into desired shape and size using the action of pressure and heat.

      2 b) Machining: The extra/undesired material is removed by using machining operations such as cutting, grinding turning and drilling. Machining operations for composites require different operating conditions and tools than that by metals.

      3 c) Joining and assembly: With the help of joining and assembly techniques (mechanical fastening, fusion bonding, adhesive bonding), different components are attached in a manner so that a desired task can be performed. The disadvantage is that such operations consumes time and are costly therefore, the joining and assembly is generally avoided in the process of cost reduction.

      4 d) Finishing: In the end, finishing operations are performed so as to improve outside appearance, to provide a wear-resistant coating, to protect the product against environmental degradation, and/or to provide a metal coating which resembles that of a metal.

Schematic illustration of the classification of composites fabrication techniques.

      Generally, above mentioned operations are not generally performed at any single processing plant. Nevertheless, some products including fishing rods, golf clubs, tennis rackets, etc. are prepared in one company only and then directly sent to the market.

      In the last two decades, a steep increment in the composites utilization in various applications has dramatically increased because they are stronger and lighter than their metal counterparts. Today, the composites have become a material of choice in every industries and it is not possible to find any industry which does not utilize composite materials. Transportation industry holds the maximum utilization of composite materials. The extensive changes in the technology and its need based utilization in the past three to four decades have created ample opportunities that have fostered the need of advanced materials in associated manufacturing technology [17]. Industries are making huge profits from the usage of composite

Скачать книгу