Population Genetics. Matthew B. Hamilton

Чтение книги онлайн.

Читать онлайн книгу Population Genetics - Matthew B. Hamilton страница 19

Population Genetics - Matthew B. Hamilton

Скачать книгу

selection does not act (all individuals and gametes have equal fitness).

Schematic illustration of a de Finetti diagram for one locus with two alleles. The triangular coordinate system results from the requirement that the frequencies of all three genotypes must sum to one. Any point inside or on the edge of the triangle represents all three genotype frequencies of a population. The parabola describes Hardy–Weinberg expected genotype frequencies. The dashed lines represent the frequencies of each of the three genotypes between zero and one.

      Once you are at the Simulations website home page, use the Simulations menu to select the de Finetti simulation. The simulation is based on a triangular graph like that in Figure 2.6 with a control pane at the left where you can set parameters. With Mating Model set on Random Mating, use the sliders to set genotype frequencies. The parabola defines Hardy–Weinberg expected genotype frequencies, so try to adjust the genotype frequencies to fall at different locations along the parabola. Also, try genotype frequencies that are located above and below the parabola.

      Null model: A testable model of no effect or a background effect. A prediction or expectation based on the simplest assumptions to predict outcomes. Often, population genetic null models make predictions based on purely random processes such as random mating or genetic drift, random samples or combinations, or variables having background effects on allele or genotype frequencies.

      In the final part of this section, we will explore genotype frequency expectations adjusted to account for ploidy (the number of homologous chromosomes) differences between males and females as seen in chromosomal sex determination and haplo‐diploid organisms. In chromosomal sex determination as seen in mammals, birds, and Lepidoptera (butterflies), one sex is determined by possession of two identical chromosomes (the homogametic sex) and the other sex determined by possession of two different chromosomes (the heterogametic sex). In mammals, females are homogametic (XX) and males heterogametic (XY), whereas, in birds, the opposite is true, with heterogametic females (ZW) and homogametic males (ZZ). In haplo‐diploid species such as bees and wasps (Hymenoptera), males are haploid (hemizygous) for all chromosomes, whereas females are diploid for all chromosomes.

Скачать книгу