Nature's Teachings: Human Invention Anticipated by Nature. J. G. Wood
Чтение книги онлайн.
Читать онлайн книгу Nature's Teachings: Human Invention Anticipated by Nature - J. G. Wood страница 6
Laying a number of smaller logs or branches upon the bars which connect the larger logs is an evident mode of forming a continuous platform, and thus the raft is completed. It would not be long before the superior buoyancy of a hollow over a solid log would be discovered, and so, when the savage could not find a log ready hollowed to his hand, he would hollow one for himself, mostly using fire in lieu of tools. The progress from a hollowed log, or “dug-out,” as it is popularly called, to the bark canoe, and then the built boat, naturally followed, the boats increasing in size until they were developed into ships.
Such, then, is a slight sketch of the gradual construction of the Boat, based, though perhaps ignorantly, on the theory of displacement. Now, let us ask ourselves whether, in creation, there are any natural boats which existed before man came upon the earth, and from which he might have taken the idea if he had been able to reason on the subject. The Paper Nautilus is, of course, the first example that comes before the mind; but although, as we have seen, the delicate shell of the nautilus is not used as a boat, and its sailing and rowing powers are alike fabulous, there is, as is the case with most fables, a substratum of truth, and there are aquatic molluscs which form themselves into boats, although they do not propel themselves with sails or oars.
Many species of molluscs possess this art, but we will select one as an example of them all, because it is very plentiful in our own country, and may be found in almost any number. It is the common Water-snail (Limnæa stagnalis), which abounds in our streams where the current is not very strong. Even in tolerably swift streams the Limnæa may be found plentifully in any bay or sudden curve where a reverse current is generated, and therefore the force of the stream is partially neutralised. These molluscs absolutely swarm in the Cherwell, and in the multitudinous ditches which drain the flat country about Oxford into that river as well as the Isis.
Belonging to the Gasteropods, the Water-snail can crawl over the stones or aquatic vegetation, just as the common garden snail or slug does on land. But it has another mode of progression, which it very often employs in warm weather. It ascends to the surface of the water, reverses its position so that the shell is downward, spreads out the foot as widely as possible, and then contracts it in the centre, so as to form it into a shallow boat.
The carrying capacity of this boat is necessarily small, but as the shell and nearly the whole of the animal are submerged, and therefore mostly sustained by the water, a very small amount of flotative power is sufficient for the purpose. Sometimes, on a fine day, whole fleets of these natural boats may be seen floating down the stream, thus obtaining a change of locality without any personal exertion.
In perfectly still water, where no current can waft the Limnæa on its easy voyage, it still is able to convey itself from one place to another. By means of extending and contracting the foot, it actually contrives to crawl along the surface of the water almost as readily as if it were upon the under side of some solid body, and, although its progress is slow, it is very steady. Another very common British water-snail, the Pouch-shell (Physa fontinalis), has almost exactly the same habits. Reference will be made to the Pouch-shell on another page.
The capacity for converting the body into a boat is not confined to the molluscs, but is shared by many other animals. Take, for example, the well-known marine animals, called popularly Sea-anemones. As they appear when planted on the rocks, they look as incapable of motion as the flowers whose names they bear. Yet, by means of the flattened base, which they use just as a snail uses its feet, they can manage to glide along the rocks in any direction, though very slowly.
The base is capable of extension and contraction, and by elongating one side of it, fixing the elongated portion, and then raising the remainder of the base towards it, the animal makes practically a series of very slow steps. This mode of progression may often be seen in operation on the glass front of an aquarium.
The same property of expansion and contraction enables the Sea-anemones to convert their bodies into boats, and float on the surface of the water. When one of these animals wishes to swim, it ascends the object to which it is clinging—say the glass of the aquarium—until it has reached the air. It then very slowly, and bit by bit, detaches the upper part of the base from the glass, allowing itself to hang with its tentacles downward. These, by the way, are almost wholly withdrawn when the animal is engaged in this business. By degrees the whole of the base is detached from the glass except a very tiny portion of the edge. The base is next contracted in the middle into the form of a shallow cup, and, when this is done, the last hold of the glass is released, and the animal floats away, supported by its hollowed base.
Entomologists are familiar with the following facts, and were this work addressed to them alone, a simple mention of the insect would be sufficient. But as this work is intended for the general public, it will be necessary to give a description, though a brief one, of the wonderful manner in which an insect, which we are apt to think is only too common, plays the part of a boat at its entrance to life and just before its departure from this world, not to mention its intermediate state, to which reference will be made under another heading.
The insect in question is the common Gnat (Culex pipiens), which makes such ravages upon those who are afflicted, like myself, with delicate skins, and can have a limb rendered useless for days by a single gnat-bite.
In this insect, the beginning and the end of life are so closely interwoven, that it is not easy to determine which has the prior claim to description, but we will begin with the egg.
With very few exceptions, such as the Earwig, which watches over its eggs and young like a hen over her nest and chickens, the insects merely deposit their eggs upon or close to the food of the future young, and leave them to their fate. The eggs of the Gnat, however, require different treatment. The young larvæ, when hatched, immediately pass into the water in which they have to live, and yet the eggs are so constituted that they need the warmth of the sun in order to hatch them. The machinery by which both these objects are attained is singularly beautiful.
The shape of the egg very much resembles that of a common ninepin, and the structure is such that it must be kept upright, so that the top shall be exposed to the air and sun, and the bottom be immersed in the water. It would be almost impossible that these conditions should be attained if the eggs were either dropped separately into the water or fixed to aquatic plants, as is the case with many creatures whose eggs are hatched solely in or on the water.
As is the case with many insects, each egg when laid is enveloped with a slight coating of a glutinous character, so that they adhere together. And, in the case of the Gnat, this material is insoluble in water, and hardens almost immediately after the egg is deposited. Taking advantage of these peculiarities, the female Gnat places herself on the edge of a floating leaf or similar object, so that her long and slender hind-legs rest on the water. In some mysterious way, the eggs, as they are successively produced, are passed along the hind-legs, and are arranged side by side in such a manner that they are formed into the figure of a boat, being fixed to each other by the glutinous substance which has already been mentioned.
It is a very remarkable fact, which assists in strengthening the theory on which this book is written, that the lines of the best modern life-boats are almost identical with those of the Gnat-boat, and that both possess the power of righting themselves if capsized. In all trials of a new life-boat, one of the most important is that which tests her capability of self-righting; and any one who has