Heterogeneous Catalysts. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Heterogeneous Catalysts - Группа авторов страница 29
21 21 Gong, X.‐Q. and Selloni, A. (2007). Phys. Rev. B 76: 235307‐1–235307‐11.
22 22 Lazzeri, M., Vittadini, A., and Selloni, A. (2002). Phys. Rev. B 65: 155409.
23 23 Liu, G., Yu, J.C., Lu, G.Q., and Cheng, H.M. (2011). Chem. Commun. 47: 6763–6783.
24 24 Harris, P.J.F. (1986). Nature 323: 792–794.
25 25 Cha, S.I., Mo, C.B., Kim, K.T. et al. (2006). J. Mater. Res. 21: 2371–2378.
26 26 Sun, Y.G. and Xia, Y.N. (2002). Science 298: 2176–2179.
27 27 Xiong, Y.J., Cai, H.G., Yin, Y.D., and Xia, Y.N. (2007). Chem. Phys. Lett. 440: 273–278.
28 28 Yang, H.G., Sun, C.H., Qiao, S.Z. et al. (2008). Nature 453: 638–641.
29 29 Huang, W.C., Lyu, L.M., Yang, Y.C., and Huang, M.H. (2012). J. Am. Chem. Soc. 134: 1261–1267.
30 30 Zhang, D.F., Zhang, H., Guo, L. et al. (2009). J. Mater. Chem. 19: 5220–5225.
31 31 Sui, Y.M., Fu, W.Y., Zeng, Y. et al. (2010). Angew. Chem. Int. Ed. 49: 4282–4285.
32 32 Liu, L., Qian, J.S., Li, B. et al. (2010). Chem. Commun. 46: 2402–2404.
33 33 Schlogl, R. (2015). Angew. Chem. 54: 3465–3520.
34 34 Tian, N., Zhou, Z.Y., Sun, S.G. et al. (2007). Science 316: 732–735.
35 35 Sun, C.H., Liu, L.M., Selloni, A. et al. (2010). J. Mater. Chem. 20: 10319–10334.
36 36 Vittadini, A., Selloni, A., Rotzinger, F.P., and Gratzel, M. (1998). Phys. Rev. Lett. 81: 2954–2957.
37 37 Herman, G.S., Dohnalek, Z., Ruzycki, N., and Diebold, U. (2003). J. Phys. Chem. B 107: 2788–2795.
38 38 Diebold, U. (2003). Surf. Sci. Rep. 48: 53–229.
39 39 Onda, K., Li, B., Zhao, J. et al. (2005). Science 308: 1154–1158.
40 40 He, Y., Tilocca, A., Dulub, O. et al. (2009). Nat. Mater. 8: 585–589.
41 41 Selloni, A., Vittadini, A., and Gratzel, M. (1998). Surf. Sci. 402: 219–222.
42 42 Kittel, C. (2004). Introduction to Solid State Physicis, 8e. Wiley.
43 43 Yamamoto, Y. and Miyokawa, T. (1998). J. Vac. Sci. Technol., B 16: 2871–2875.
44 44 Kaminsky, M. (1965). Atomic and Ionic Impact Phenomena on Metal Surfaces. Academic Press.
45 45 Dweydari, A.W. and Mee, C.H.B. (1975). Phys. Status Solidi A 27: 223–230.
46 46 Asahi, R., Taga, Y., Mannstadt, W., and Freeman, A.J. (2000). Phys. Rev. B 61: 7459–7465.
47 47 Liu, G., Sun, C.H., Yang, H.G. et al. (2010). Chem. Commun. 46: 755–757.
48 48 Bi, Y., Ouyang, S., Umezawa, N. et al. (2011). J. Am. Chem. Soc. 133: 6490–6492.
49 49 Wang, X., Yin, L., Liu, G. et al. (2011). Energy Environ. Sci. 4: 3976–3979.
50 50 Xie, Y.P., Liu, G., Yin, L., and Cheng, H.‐M. (2012). J. Mater. Chem. 22: 6746–6751.
51 51 Wiley, B.J., Im, S.H., Li, Z.Y. et al. (2006). J. Phys. Chem. B 110: 15666–15675.
52 52 Zhu, J., Fan, F.T., Chen, R.T. et al. (2015). Angew. Chem. Int. Ed. 54: 9111–9114.
53 53 Zhu, J., Pang, S., Dittrich, T. et al. (2017). Nano Lett. 17: 6735–6741.
54 54 Huh, J.H., Lee, J., and Lee, S. (2018). ACS Photonics 5: 413–421.
55 55 Tao, A., Sinsermsuksakul, P., and Yang, P.D. (2006). Angew. Chem. Int. Ed. 45: 4597–4601.
56 56 Zhang, Y.N., Qin, N., Li, J.Y. et al. (2017). Appl. Catal., B 216: 30–40.
57 57 Tao, J.G., Luttrell, T., and Batzill, M. (2011). Nat. Chem. 3: 296–300.
58 58 Wang, L., Nguyen, N.T., Shen, Z.Q. et al. (2018). Nano Energy 50: 331–338.
59 59 Huang, M.H., Rej, S., and Chiu, C.Y. (2015). Small 11: 2716–2726.
60 60 Rej, S., Wang, H.J., Huang, M.X. et al. (2015). Nanoscale 7: 11135–11141.
61 61 Yang, K.H., Hsu, S.C., and Huang, M.H. (2016). Chem. Mater. 28: 5140–5146.
62 62 Somorjai, G.A. (1994). Introduction to Surface Chemistry and Catalysis. Wiley.
63 63 Hoshi, N., Kawatani, S., Kudo, M., and Hori, Y. (1999). J. Electroanal. Chem. 467: 67–73.
64 64 Banholzer, W.F. and Masel, R.I. (1984). J. Catal. 85: 127–134.
3 Electrochemical Synthesis of Nanostructured Catalytic Thin Films
Hoi Ying Chung and Yun Hau Ng
City University of Hong Kong, School of Energy and Environment, Kowloon, Hong Kong, Special Administrative Region (S.A.R.)
3.1 Introduction
Catalytically active materials in the physical form of thin film (in the range of nanometer to micrometer) have found wide applications in reactions involving thermal catalysis, electrocatalysis, and photocatalysis [1]. Although depending on the targeted applications, usage of catalytic thin films offers a few advantages from the operational viewpoint over the powder or homogeneous catalyst counterpart. For instance, the elimination of catalyst separation process upon completion of reactions is helpful in simplifying processes. Improved robustness against sintering at elevated operating temperature is another crucial benefits offered by thin films to prolong the stability of catalyst because the heat‐induced sintering always results in the loss of activity. Furthermore, catalytic reactions involving electrical circuit such as electrochemical hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and other electrocatalytic reactions must at least require the active materials to be immobilized on the electrodes. Thin film is one of the most common forms of active electrodes – see, for example, their detailed applications in electrochemical water splitting, polymer electrolyte membrane fuel cells, and photo/electrochemical CO2 reduction in Chapters 30, 32, and 36, respectively.
These catalytic thin films are prepared either by direct growth of catalytic materials on thin substrates (e.g. glass or metal sheets) or they can be pre‐synthesized as powder materials followed by an immobilization process on the thin films [2, 3]. Traditionally, flat thin films can be prepared using thermal/chemical/physical/vapor deposition, sputtering, spin/ dip/doctor‐blade coating, electroplating, etc. [4–10] Principles used in guiding the formation of thin films are vastly different. For example, in vapor deposition methods, usually low pressures and high temperatures are needed for generating the vapor of precursors. In particle coating techniques, particle size, binder, and viscosity modifier play important roles in ensuring good