Heterogeneous Catalysts. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Heterogeneous Catalysts - Группа авторов страница 30

Heterogeneous Catalysts - Группа авторов

Скачать книгу

Control over the uniformity of thickness, composition of materials, and strength of adhesion are the typical aspects considered in the flat thin film synthesis. Evolved from these flat thin films, catalytic thin films with nanostructure (whether with or without ordered nanostructure; with or without regular pattern) are emerging as a new class of functional materials. Nanostructures of catalytic components on thin films can be generally grouped into 1D (e.g. nanotubes, nanorods), 2D (e.g. nanosheets), and 3D (hierarchical nanostructures, e.g. tetrapods, nanoflowers, sea urchin‐like structures) configurations, with unique properties found in each nanostructure. Modulation of these anisotropic nanostructures, where the shapes of the nanostructures are formed as a result of preferential growth (or leaching) in certain directions, on thin films is another domain that needs to be addressed with precise control. As the conventional flat thin films are typically made of bulk materials (metal, metal oxides, metal‐based semiconductors, polymeric structures, etc.), the introduction of nanostructures offers additional properties (e.g. physical, electronic, and optical) [11–13] to the thin film, in which new applications are found.

      Among all methods capable of fabricating traditional flat catalytic thin film, a handful of existing methods can be adopted with modification to find usefulness in the preparation of nanostructured thin films. In this chapter, electrochemical method, which has been used in both the fabrication of flat single‐component thin films and the emerging complicated nanostructured multicomponent thin films, will be discussed in detail. Upon reading this chapter, the readers will understand the core principles shared within all electrochemical synthetic methods and at the same time keep up with the latest progress in the evolution of these techniques in meeting the renewed requirements in designing functional nanostructured catalytic thin films.

      Electrochemical processes have been extensively used for preparing thin films with their unique advantages in scalable production and ability to form films with precise control of thickness and its homogeneity [14]. Based on the principle of electrochemical processes, thin films made of metal, simple metal oxides, or polymerized organic film can be formed using anodization, cathodic electrolytic deposition, electrophoretic deposition, electro‐oxidative polymerization, and combinatory methods. All these mentioned methods are operating based on the manipulation of electrons induced by a simple power supply or potentiostat with various functionalities.

Schematic drawing of a general electrochemical setup with basic components used for electrochemical synthesis of nanostructured thin films. In this specific configuration, the cathode (on which the reduction reaction takes place) is the working electrode, with potential applied with respect to the reference electrode. The anode (on which the oxidation reaction takes place) in this case is the counter electrode. (See online version for color figure).

      3.2.1 Anodization

Скачать книгу