Heterogeneous Catalysts. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Heterogeneous Catalysts - Группа авторов страница 33

Heterogeneous Catalysts - Группа авторов

Скачать книгу

alt="Different modes of current density for electrodeposition (a) direct current (DC), (b) pulse current (PC), and (c) pulse reverse current (PRC)."/>

      3.2.3 Electrophoretic Deposition

Schematic illustration of electrophoretic deposition process: (a) cathodic electrophoretic deposition and (b) anodic electrophoretic deposition.

      Unlike electrodeposition, the electrophoretic deposition does not require the liquid medium to be conductance, and in fact organic solvent is a preferred medium. Water is not an ideal medium in electrophoretic deposition because the applied voltage may cause the water splitting reaction that produces hydrogen and oxygen gases at the cathode and anode, respectively. The rigorous evolution of gases could adversely affect the formation of deposit on the electrodes. Because the deposition is greatly determined by the surface charge of particles, this technique offers versatility in depositing complex compounds and composites as long as surface charge can be modulated. One potential weakness, however, is the absence of particle and electrode reactions in electrophoretic deposition. The deposited materials do not lose their charge upon deposition, and therefore a reversal of electric field can result in delamination of the deposited layer. It is important to carefully select similarly charged particles and similar solvent–binder–dispersant systems for having good control over layer thickness.

      Selection of liquid medium is another factor governing the quality of electrophoretic deposition. Dielectric constant of the liquid medium is highly correlated with the deposition performance. Deposition fails in the liquid medium with too low dielectric constant because of weak dissociative power, while electrophoretic mobility is significantly reduced when a medium with high dielectric constant is used due to the reduced size of double layer region. Consequently, liquids of low dielectric constant (but not too low) are a favorable condition. As mentioned earlier, stabilization of suspension, i.e. colloidal stability, is critical in facilitating smooth deposition, and this stability can be achieved by having high and uniform surface charge on the particle. The ζ potential of particle becomes one of the key factors in the electrophoretic deposition. The magnitude of the ζ potential determines the stability of the suspension (repulsive interaction between particles), while the polarity of the ζ potential (positively or negatively charge) decides the direction and migration velocity of the particles during electrophoretic process. The probability of coagulation of the suspended particle must be minimized by modulating the two forces with opposite effects: electrostatic and van der Waals forces. High electrostatic repulsion attributed to the high ζ potential (high particle charge) is desired to suppress agglomeration. Conveniently, the ζ potential can be tuned by carefully selecting pH and additives to the suspension.

      3.2.4 Combinatory Methods Involving Electrochemical Process

      Although the electrochemical principles discussed in Section 3.2 are sufficient to guide a variety of thin film synthesis, recently there are more examples adopting a combinatory approach to prepare new functional thin films. The combinatory approaches can integrate two electrochemical methods or combine an electrochemical method with other technique to synthesize thin film with unique properties. As discussed in the earlier section, anodization is an effective method in producing nanostructured thin films made of simple metal oxide. A wide variety of simple metal oxides such as Al2O3, TiO2, WO3, SiO2, MoO3, and NiO fabricated by anodization process has been reported. Relatively rare is the fabrication of ternary or complex oxide using anodization. Composites of metal oxide decorated with other functional materials are also generally not being reported using anodization process alone. In this section, the design of metal oxide‐based composite and the preparation of ternary oxide thin film using a combinatory electrochemical method will be discussed.

      3.2.4.1 Combined Electrophoretic Deposition–Anodization (CEPDA) Approach

Скачать книгу