Heterogeneous Catalysts. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Heterogeneous Catalysts - Группа авторов страница 35

Heterogeneous Catalysts - Группа авторов

Скачать книгу

thin films and nanostructures. Electrochim. Acta 53: 8103–8117.

      17 17 Besra, L. and Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52: 1–61.

      18 18 Yun, J.‐Y., Wong, R.J., Ng, Y.H. et al. (2012). Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide‐TiO2 nanotube films. RSC Adv. 2: 8164–8171.

      19 19 Prakasam, H.E., Shankar, K., Paulose, M. et al. (2007). A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111: 7235–7241.

      20 20 Yun, J.‐H., Ng, Y.H., Ye, C. et al. (2011). Sodium fluoride‐assisted modulation of anodized TiO2 nanotube for dye‐sensitized solar cells application. ACS Appl. Mater. Interfaces 3: 1585–1593.

      21 21 Ng, C., Ye, C., Ng, Y.H., and Amal, R. (2010). Flower‐shaped tungsten oxide with inorganic fullerene‐like structure: synthesis and characterization. Cryst. Growth Des. 10: 3794–3801.

      22 22 Lou, S.N., Yap, N., Scott, J. et al. (2014). Influence of MoO3(110) crystalline plane on its self‐charging photoelectrochemical properties. Sci. Rep. 4: 7428.

      23 23 Albu, S.P., Kim, D., and Schmuki, P. (2008). Growth of aligned TiO2 bamboo‐type nanotubes and highly ordered nanolace. Angew. Chem. Int. Ed. 47: 1916–1919.

      24 24 Lee, W., Kim, J.‐C., and Gosele, U. (2010). Spontaneous current oscillations during hard anodization of aluminium under potentiostatic conditions. Adv. Funct. Mater. 20: 21–27.

      25 25 Sulka, G.D. (2008). Highly Ordered Anodic Porous Alumina Formation by Self‐Organized Anodizing. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA. ISBN: 978‐3‐527‐31876‐6.

      26 26 Korotcenkov, G. and Cho, B.K. (2010). Silicon porosification: state of the art. Crit. Rev. Solid State Mater. Sci. 35: 153–260.

      27 27 Roy, P., Berger, S., and Schumuki, P. (2011). TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50: 2904–2939.

      28 28 Chandrasekar, M.S. and Pushpavanam, M. (2008). Pulse and pulse reverse plating – conceptual, advantages and applications. Electrochim. Acta 53: 3313–3322.

      29 29 Saji, V.S. (2018). Electrodeposition in bulk metallic glasses. Materialia 3: 1–11.

      30 30 Yun, J.‐H., Ng, Y.H., Huang, S. et al. (2011). Wrapping the walls of n‐TiO2 nanotubes with p‐CuInS2 nanoparticles using pulsed‐electrodeposition for improved heterojunction photoelectrodes. Chem. Commun. 47: 11288–11290.

      31 31 Tang, Y., Traveerungroj, P., Tan, H.L. et al. (2015). Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination. J. Mater. Chem. A 3: 19582–19587.

      32 32 Tang, Y., Wang, P., Yun, J.H. et al. (2015). Frequency‐regulated pulsed electrodeposition of CuInS2 on ZnO nanorod arrays as visible light photoanodes. J. Mater. Chem. A 3: 15876–15881.

      33 33 Ng, C., Iwase, A., Ng, Y.H., and Amal, R. (2012). Transforming anodized WO3 films into visible‐light active Bi2WO6 photoelectrodes by hydrothermal treatment. J. Phys. Chem. Lett. 3: 913–918.

      34 34 Lou, S.N., Scott, J., Iwase, A. et al. (2016). Photoelectrochemical water oxidation using a Bi2MoO6/MoO3 heterojunction photoanode synthesised by hydrothermal treatment of an anodised MoO3 thin film. J. Mater. Chem. A 4: 6964–6971.

       Enrique García‐Bordejé

       Instituto de Carboquímica (ICB‐CSIC), Department of Chemical Processes and Nanotechnology, Miguel Luesma Castán 4, E‐50018 Zaragoza, Spain

      Activated carbon is typically the choice of industry as catalyst supports for noble metals for hydrogenation and oxidation in liquid phase due to its outstanding properties such as resistance to basic/acidic media, chemical inertness, high surface area, and the easy recovery of the noble metals by calcination. Carbon black, consisting of microporous and graphitic carbon, is the benchmark support for noble metals used in electrocatalysis due to its excellent conductivity (see for examples, Chapter 30 for electrocatalytic water splitting, and Chapter 32 for fuel‐cell‐related electrocatalytic reactions). More recently, development of carbon‐based catalysts have been identified as key technology in enabling the future biobased economy due to its resistance to hydrothermal conditions typical of biomass conversion processes (see Chapter 33 for the conversion of lignocellulose to fuel and Chapter 34 for the valorization of carbohydrates) [1]. The inertness of some carbon materials endows them with certain advantages over oxidized supports such as keeping metal nanoparticles in more reduced state compared with other supports [2], low metal–support interaction, and preventing the deactivation by coke deposition. Despite the aforementioned advantages of carbon over other metal oxide supports, the preparation of supported catalysts on carbon is more challenging than on metal oxide supports due to the complex surface chemistry of the former. Owing to their rich surface chemistry, variations of carbon‐based materials can be designed as metal‐free catalysts. There are excellent tutorials and reviews about the preparation and use of carbon‐based materials as metal‐free catalysts or “carbocatalysts” [3, 4]. Therefore, this chapter does not cover the preparation of carbocatalysts and instead focuses on the design and preparation of metal catalysts supported on carbon.

Скачать книгу