Matemáticas y Física & Química. Equipo Parramón Paidotribo
Чтение книги онлайн.
Читать онлайн книгу Matemáticas y Física & Química - Equipo Parramón Paidotribo страница 4
En nuestros días, las matemáticas son una herramienta imprescindible para el desarrollo de las ciencias experimentales como la física, la química o la biología; se aplican con éxito a diversas ramas tecnológicas como la ingeniería, la informática o la arquitectura; facilitan una ayuda inestimable a las ciencias sociales como la economía, la sociología o la psicología, e incluso se emplean en la creación musical o en las artes plásticas.
Los números, o cifras, son entes abstractos que forman una serie ordenada y que indican la cantidad de elementos de un conjunto.
Los egipcios dominaban de tal forma las matemáticas, que hace más de 4.500 años pudieron levantar colosales pirámides de prodigiosa precisión.
LOS CAMPOS DE LAS MATEMÁTICAS
Parece lógico pensar que, aplicándose a tan variadas ramas científicas, las matemáticas abarquen multitud de campos. Así es, en efecto. Ya hemos mencionado la aritmética, que nace con el descubrimiento del concepto de número natural y que ha ido evolucionando a lo largo de la historia con la introducción de nuevos conjuntos numéricos en un proceso que llega a su máximo nivel con los estudios del matemático alemán Georg Cantor (1845-1918) sobre los números transfinitos.
El elemento más característico del álgebra es el uso de letras para representar cantidades. Así, por ejemplo, la frase “El volumen de un cilindro se calcula multiplicando la superficie de su base por la longitud de su altura” puede escribirse simplificadamente en lenguaje algebraico así: V = B · h. En este caso, las letras son variables en las que podemos sustituir cantidades diferentes, según sean las dimensiones del cilindro en particular. En otras ocasiones las letras son incógnitas o cantidades desconocidas que se pueden obtener empleando procedimientos más o menos ingeniosos.
La palabra álgebra deriva de Al-gabr, título de una obra del matemático árabe al-Hwarizmi (780-850), pero el primer matemático que utilizó letras para designar a cantidades diversas fue el francés François Viète (1540-1603). El álgebra tomó un gran impulso al relacionarse con la geometría gracias a los trabajos de René Descartes (1596-1650) y Pierre de Fermat (1601-1665), padres de la llamada geometría analítica.
El estudio de las relaciones existentes entre dos magnitudes, como la velocidad y el tiempo, dio lugar al concepto de función, básico en el análisis matemático. El cálculo diferencial, obra de Newton (1642-1727) y Leibniz (1646-1716), es la parte del análisis que se ocupa del estudio de la variación de una función. Ensanchado con los trabajos de Euler (1707-1783) y Gauss (1777-1855), el análisis matemático ha sido esencial para el desarrollo de las ciencias experimentales.
El inglés Isaac Newton (1642-1727) destacó en diversas disciplinas (física, matemáticas, astronomía...), en una época en que la ciencia era un todo interrelacionado.
La geometría es la parte de las matemáticas que estudia el espacio y las figuras y los cuerpos que en él se pueden imaginar.
Los matemáticos del antiguo Egipto conocían bien las formas geométricas básicas, lo que les permitió, entre otras cosas, construir sus famosas pirámides. Pero los grandes avances que experimentó la geometría en la antigüedad fueron obra de matemáticos griegos como Tales de Mileto (630-546 a.C.) o Pitágoras (580-497 a.C). Una obra completada por Euclides trescientos años antes de nuestra era. Estos estudios fueron tan profundos, que hubo que esperar muchos siglos para que se produjeran avances importantes en el campo geométrico: la geometría analítica de Descartes y Fermat y la geometría hiperbólica de Lobatxevski (1792-1856) y Bernhard Riemann (1826-1866).
La teoría de probabilidades nació como un divertimento matemático en un intercambio de cartas entre Pascal (1623-1662) y Fermat, en el que discutían sobre diversas cuestiones relativas a los juegos de azar. A pesar de las aportaciones de matemáticos de la talla de Laplace (1749-1829) y Gauss, la estadística se tomó como una rama menor de las matemáticas hasta bien entrado el siglo XX. Sin embargo, tras los trabajos del ruso Kolmogorov (1903-1987) y del alemán Fisher (1890-1962) en este campo, hoy se considera que la estadística es una de las ramas matemáticas más importantes, debido a sus múltiples aplicaciones.
Un estudio estadístico consta de tres partes. En la primera se observa un fenómeno, se toman los datos correspondientes, se resumen y se relacionan entre sí. En la segunda se buscan teorías que expliquen coherentemente dichas observaciones. En la tercera se hacen previsiones a la luz de dichas teorías.
Aunque los juegos de azar parecen sometidos al capricho de la suerte, detrás suyo hay toda una teoría matemática de la probabilidad.
EL ESTUDIO DE LAS MATEMÁTICAS
El camino que vamos a seguir aquí nos permitirá visitar los elementos básicos de los campos matemáticos antes presentados. Comenzaremos con la magia de los números, los distintos sistemas de numeración que empleamos y las sucesivas ampliaciones del conjunto numérico que ha sido necesario hacer para que sea posible efectuar todas las operaciones que realizamos en la actualidad.
Una vez acabada esta etapa, intentaremos poner el álgebra a nuestro servicio, aprendiendo a plantear problemas y, seguidamente a resolverlos mediante sistemas de ecuaciones.
A continuación visitaremos el universo de las relaciones entre las cosas que nos rodean y aprenderemos a usar las funciones más empleadas para expresar matemáticamente dichas relaciones. Sólo entonces estaremos en condiciones de abordar la matemática comercial y de estudiar sus aspectos básicos, como el funcionamiento de los créditos y de las hipotecas.
Nuestro siguiente tema será la geometría plana, es decir la que estudia las figuras en dos dimensiones.
Echaremos un vistazo a la trigonometría, que se ocupa de las relaciones existentes entre los ángulos y las distancias, y que resulta fundamental en el campo de las modernas telecomunicaciones. Nos adentraremos entonces en el estudio de los cuerpos geométricos que pueblan el espacio de tres dimensiones.
Nuestra siguiente etapa constituirá una iniciación a la estadística. Ordenaremos datos, dibujaremos gráficos, hallaremos parámetros y aprenderemos a calcular probabilidades.
No nos gustaría acabar este viaje sin acercarnos a descubrir cuál es el presente y el futuro próximo de la matemática y a conocer algunos retos a los que se enfrenta la matemática de nuestros días, tales como el desarrollo de la teoría del caos, de la geometría fractal o de la lógica borrosa.
Las gráficas nos