Polymer Nanocomposite Materials. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Polymer Nanocomposite Materials - Группа авторов страница 22

Polymer Nanocomposite Materials - Группа авторов

Скачать книгу

et al. (2014). The strain-sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene conductive composites prepared by the vacuum-assisted hot compression. Colloid. Polym. Sci. 292: 945–951.

      35 35 Strååt, M., Rigdahl, M., and Hagström, B. (2012). Conducting bicomponent fibers obtained by melt spinning of PA6 and polyolefins containing high amounts of carbonaceous fillers. J. Appl. Polym. Sci. 123: 936–943.

      36 36 Devaux, E., Koncar, V., Kim, B. et al. (2016). Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications. Trans. Inst. Meas. Control 29: 355–376.

      37 37 Kim, J.Y. (2009). The effect of carbon nanotube on the physical properties of poly(butylene terephthalate) nanocomposite by simple melt blending. J. Appl. Polym. Sci. 112: 2589–2600.

      38 38 Shen, B., Zhai, W., Chen, C. et al. (2011). Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3: 3103–3109.

      39 39 Pan, Y., Li, L., Chan, S.H., and Zhao, J. (2010). Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites Part A 41: 419–426.

      40 40 Jiang, S., Gui, Z., Bao, C. et al. (2013). Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chem. Eng. J. 226: 326–335.

      41 41 You, F., Wang, D., Cao, J. et al. (2014). In situ thermal reduction of graphene oxide in a styrene-ethylene/butylene-styrene triblock copolymer via melt blending. Polym. Int. 63: 93–99.

      42 42 Maiti, S., Suin, S., Shrivastava, N.K., and Khatua, B.B. (2013). Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly(butylene terephthalate). J. Appl. Polym. Sci. 130: 543–553.

      43 43 Sharma, M., Sharma, S., Abraham, J. et al. (2014). Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater. Res. Express 1: 035003.

      44 44 Soroudi, A. and Skrifvars, M. (2010). Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres. Synth. Met. 160: 1143–1147.

      45 45 Yu, F., Deng, H., Zhang, Q. et al. (2013). Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer 54: 6425–6436.

      46 46 Fan, Z. and Advani, S.G. (2007). Rheology of multiwall carbon nanotube suspensions. J. Rheol. 51: 585–604.

      47 47 Pan, H., Zhang, Y., Hang, Y. et al. (2012). Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Biomacromolecules 13: 2859–2867.

      48 48 Li, T., Zhao, G., and Wang, G. (2018). Effect of preparation methods on electrical and electromagnetic interference shielding properties of PMMA/MWCNT nanocomposites. Polym. Compos. 40: E1786–E1800.

      49 49 Ramanujam, B.T.S. and Radhakrishnan, S. (2014). Solution-blended polyethersulfone–graphite hybrid composites. J. Thermoplast. Compos. Mater. 28: 835–848.

      50 50 Gu, J., Gu, H., Zhang, Q. et al. (2018). Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil–water separation applications. J. Colloid Interface Sci. 514: 386–395.

      51 51 Kim, Y., Le, T.-H., Kim, S. et al. (2018). Single-walled carbon nanotube-in-binary-polymer nanofiber structures and their use as carbon precursors for electrochemical applications. J. Phys. Chem. C 122: 4189–4198.

      52 52 Zhang, S., Li, D., Kang, J. et al. (2018). Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells. J. Appl. Polym. Sci. 135: 46443.

      53 53 Jin, L., Hu, B., Kuddannaya, S. et al. (2018). A three-dimensional carbon nanotube–nanofiber composite foam for selective adsorption of oils and organic liquids. Polym. Compos. 39: E271–E277.

      54 54 Wang, K., Gu, M., Wang, J.-J. et al. (2012). Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties. Polym. Adv. Technol. 23: 262–271.

      55 55 Dhakshnamoorthy, M., Ramakrishnan, S., Vikram, S. et al. (2014). In-situ preparation and characterization of acid functionalized single walled carbon nanotubes with polyimide nanofibers. J. Nanosci. Nanotechnol. 14: 5011–5018.

      56 56 Bekyarova, E., Itkis, M.E., Cabrera, N. et al. (2005). Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 127: 5990–5995.

      57 57 Kim, J.H., Kataoka, M., Jung, Y.C. et al. (2013). Mechanically tough, electrically conductive polyethylene oxide nanofiber web incorporating DNA-wrapped double-walled carbon nanotubes. ACS Appl. Mater. Interfaces 5: 4150–4154.

      58 58 Hirsch, A. (2002). Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41: 1853–1859.

      59 59 Li, Y., Zhou, B., Zheng, G. et al. (2018). Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 6: 2258–2269.

      60 60 Ntim, S.A., Sae-Khow, O., Witzmann, F.A., and Mitra, S. (2011). Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J. Colloid Interface Sci. 355: 383–388.

      61 61 Khazaee, M., Ye, D., Majumder, A. et al. (2016). Non-covalent modified multi-walled carbon nanotubes: dispersion capabilities and interactions with bacteria. Biomed. Phys. Eng. Express 2: 055008.

      62 62 Amirilargani, M., Tofighy, M.A., Mohammadi, T., and Sadatnia, B. (2014). Novel poly(vinyl alcohol)/multiwalled carbon nanotube nanocomposite membranes for pervaporation dehydration of isopropanol: poly(sodium-4-styrenesulfonate) as a functionalization agent. Ind. Eng. Chem. Res. 53: 12819–12829.

      63 63 Lee, J.Y., Kang, T.H., Choi, J.H. et al. (2018). Improved electrical conductivity of poly(ethylene oxide) nanofibers using multi-walled carbon nanotubes. AIP Adv. 8: 035024.

      64 64 Tu, X., Hight Walker, A.R., Khripin, C.Y., and Zheng, M. (2011). Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133: 12998–13001.

      65 65 Kim, J.H., Kataoka, M., Fujisawa, K. et al. (2011). Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution. J. Phys. Chem. B 115: 14295–14300.

      66 66 Imai, Y., Fueki, T., Inoue, T., and Kakimoto, M.A. (1998). A new direct preparation of electroconductive polyimide/carbon black composite via polycondensation of nylon–salt-type monomer/carbon black mixture. J. Polym. Sci., Part A: Polym. Chem. 36: 1031–1034.

      67 67 Li, Y., Pan, D., Chen, S. et al. (2013). In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des. 47: 850–856.

      68 68 Li, J., Zhang, G., Deng, L. et al. (2014). In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry. J. Mater. Chem. A 2: 20642–20649.

      69 69 Xu, Z. and Gao, C. (2010). In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43: 6716–6723.

      70 70 Zeng, H., Gao, C., Wang, Y. et al. (2006). In situ polymerization approach to multiwalled carbon nanotubes-reinforced

Скачать книгу