Polymer Nanocomposite Materials. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Polymer Nanocomposite Materials - Группа авторов страница 22
35 35 Strååt, M., Rigdahl, M., and Hagström, B. (2012). Conducting bicomponent fibers obtained by melt spinning of PA6 and polyolefins containing high amounts of carbonaceous fillers. J. Appl. Polym. Sci. 123: 936–943.
36 36 Devaux, E., Koncar, V., Kim, B. et al. (2016). Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications. Trans. Inst. Meas. Control 29: 355–376.
37 37 Kim, J.Y. (2009). The effect of carbon nanotube on the physical properties of poly(butylene terephthalate) nanocomposite by simple melt blending. J. Appl. Polym. Sci. 112: 2589–2600.
38 38 Shen, B., Zhai, W., Chen, C. et al. (2011). Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3: 3103–3109.
39 39 Pan, Y., Li, L., Chan, S.H., and Zhao, J. (2010). Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites Part A 41: 419–426.
40 40 Jiang, S., Gui, Z., Bao, C. et al. (2013). Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chem. Eng. J. 226: 326–335.
41 41 You, F., Wang, D., Cao, J. et al. (2014). In situ thermal reduction of graphene oxide in a styrene-ethylene/butylene-styrene triblock copolymer via melt blending. Polym. Int. 63: 93–99.
42 42 Maiti, S., Suin, S., Shrivastava, N.K., and Khatua, B.B. (2013). Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly(butylene terephthalate). J. Appl. Polym. Sci. 130: 543–553.
43 43 Sharma, M., Sharma, S., Abraham, J. et al. (2014). Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater. Res. Express 1: 035003.
44 44 Soroudi, A. and Skrifvars, M. (2010). Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres. Synth. Met. 160: 1143–1147.
45 45 Yu, F., Deng, H., Zhang, Q. et al. (2013). Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer 54: 6425–6436.
46 46 Fan, Z. and Advani, S.G. (2007). Rheology of multiwall carbon nanotube suspensions. J. Rheol. 51: 585–604.
47 47 Pan, H., Zhang, Y., Hang, Y. et al. (2012). Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Biomacromolecules 13: 2859–2867.
48 48 Li, T., Zhao, G., and Wang, G. (2018). Effect of preparation methods on electrical and electromagnetic interference shielding properties of PMMA/MWCNT nanocomposites. Polym. Compos. 40: E1786–E1800.
49 49 Ramanujam, B.T.S. and Radhakrishnan, S. (2014). Solution-blended polyethersulfone–graphite hybrid composites. J. Thermoplast. Compos. Mater. 28: 835–848.
50 50 Gu, J., Gu, H., Zhang, Q. et al. (2018). Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil–water separation applications. J. Colloid Interface Sci. 514: 386–395.
51 51 Kim, Y., Le, T.-H., Kim, S. et al. (2018). Single-walled carbon nanotube-in-binary-polymer nanofiber structures and their use as carbon precursors for electrochemical applications. J. Phys. Chem. C 122: 4189–4198.
52 52 Zhang, S., Li, D., Kang, J. et al. (2018). Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells. J. Appl. Polym. Sci. 135: 46443.
53 53 Jin, L., Hu, B., Kuddannaya, S. et al. (2018). A three-dimensional carbon nanotube–nanofiber composite foam for selective adsorption of oils and organic liquids. Polym. Compos. 39: E271–E277.
54 54 Wang, K., Gu, M., Wang, J.-J. et al. (2012). Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties. Polym. Adv. Technol. 23: 262–271.
55 55 Dhakshnamoorthy, M., Ramakrishnan, S., Vikram, S. et al. (2014). In-situ preparation and characterization of acid functionalized single walled carbon nanotubes with polyimide nanofibers. J. Nanosci. Nanotechnol. 14: 5011–5018.
56 56 Bekyarova, E., Itkis, M.E., Cabrera, N. et al. (2005). Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 127: 5990–5995.
57 57 Kim, J.H., Kataoka, M., Jung, Y.C. et al. (2013). Mechanically tough, electrically conductive polyethylene oxide nanofiber web incorporating DNA-wrapped double-walled carbon nanotubes. ACS Appl. Mater. Interfaces 5: 4150–4154.
58 58 Hirsch, A. (2002). Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41: 1853–1859.
59 59 Li, Y., Zhou, B., Zheng, G. et al. (2018). Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 6: 2258–2269.
60 60 Ntim, S.A., Sae-Khow, O., Witzmann, F.A., and Mitra, S. (2011). Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J. Colloid Interface Sci. 355: 383–388.
61 61 Khazaee, M., Ye, D., Majumder, A. et al. (2016). Non-covalent modified multi-walled carbon nanotubes: dispersion capabilities and interactions with bacteria. Biomed. Phys. Eng. Express 2: 055008.
62 62 Amirilargani, M., Tofighy, M.A., Mohammadi, T., and Sadatnia, B. (2014). Novel poly(vinyl alcohol)/multiwalled carbon nanotube nanocomposite membranes for pervaporation dehydration of isopropanol: poly(sodium-4-styrenesulfonate) as a functionalization agent. Ind. Eng. Chem. Res. 53: 12819–12829.
63 63 Lee, J.Y., Kang, T.H., Choi, J.H. et al. (2018). Improved electrical conductivity of poly(ethylene oxide) nanofibers using multi-walled carbon nanotubes. AIP Adv. 8: 035024.
64 64 Tu, X., Hight Walker, A.R., Khripin, C.Y., and Zheng, M. (2011). Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133: 12998–13001.
65 65 Kim, J.H., Kataoka, M., Fujisawa, K. et al. (2011). Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution. J. Phys. Chem. B 115: 14295–14300.
66 66 Imai, Y., Fueki, T., Inoue, T., and Kakimoto, M.A. (1998). A new direct preparation of electroconductive polyimide/carbon black composite via polycondensation of nylon–salt-type monomer/carbon black mixture. J. Polym. Sci., Part A: Polym. Chem. 36: 1031–1034.
67 67 Li, Y., Pan, D., Chen, S. et al. (2013). In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des. 47: 850–856.
68 68 Li, J., Zhang, G., Deng, L. et al. (2014). In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry. J. Mater. Chem. A 2: 20642–20649.
69 69 Xu, Z. and Gao, C. (2010). In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43: 6716–6723.
70 70 Zeng, H., Gao, C., Wang, Y. et al. (2006). In situ polymerization approach to multiwalled carbon nanotubes-reinforced