Polymer Nanocomposite Materials. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Polymer Nanocomposite Materials - Группа авторов страница 23
72 72 Fim, F.d.C., Basso, N.R.S., Graebin, A.P. et al. (2013). Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 128: 2630–2637.
73 73 Zhu, J., Lim, J., Lee, C.-H. et al. (2014). Multifunctional polyimide/graphene oxide composites via in situ polymerization. J. Appl. Polym. Sci. 131: 40177.
74 74 Potts, J.R., Lee, S.H., Alam, T.M. et al. (2011). Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49: 2615–2623.
75 75 Lee, J.K.Y., Chen, N., Peng, S. et al. (2018). Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86: 40–84.
76 76 Mamunya, E., Davidenko, V., and Lebedev, E. (1995). Percolation conductivity of polymer composites filled with dispersed conductive filler. Polym. Compos. 16: 319–324.
77 77 Zhou, J., Xu, X., Xin, Y., and Lubineau, G. (2018). Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28: 1705591.
78 78 Wang, X., Sun, H., Yue, X. et al. (2018). A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 168: 126–132.
79 79 Li, J., Zhang, D., Yang, T. et al. (2018). Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J. Membr. Sci. 551: 85–92.
80 80 Yu, S., Wang, X., Xiang, H. et al. (2018). Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140: 1–9.
81 81 Roh, E., Hwang, B.-U., Kim, D. et al. (2015). Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9: 6252–6261.
82 82 Zheng, Y., Li, Y., Dai, K. et al. (2018). A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156: 276–286.
83 83 Xu, H., Qu, M., and Schubert, D.W. (2019). Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos. Sci. Technol. 181: 107690.
84 84 Duan, S., Wang, Z., Zhang, L. et al. (2018). A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 3: 1800020.
85 85 Fan, X., Wang, N., Yan, F. et al. (2018). A transfer-printed, stretchable, and reliable strain sensor using PEDOT:PSS/Ag NW hybrid films embedded into elastomers. Adv. Mater. Technol. 3: 1800030.
86 86 Joo, Y., Byun, J., Seong, N. et al. (2015). Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7: 6208–6215.
87 87 Huang, W., Dai, K., Zhai, Y. et al. (2017). Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl. Mater. Interfaces 9: 42266–42277.
88 88 Liu, H., Dong, M., Huang, W. et al. (2017). Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 5: 73–83.
89 89 Malliaris, A. and Turner, D.T. (1971). Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. J. Appl. Phys. 42: 614–618.
90 90 Liu, H., Li, Q., Zhang, S. et al. (2018). Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6: 12121–12141.
91 91 Ma, M., Zhu, Z., Wu, B. et al. (2017). Preparation of highly conductive composites with segregated structure based on polyamide-6 and reduced graphene oxide. Mater. Lett. 190: 71–74.
92 92 Cui, J. and Zhou, S. (2018). Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy. J. Mater. Chem. C 6: 550–557.
93 93 Xie, L. and Zhu, Y. (2018). Tune the phase morphology to design conductive polymer composites: a review. Polym. Compos. 39: 2985–2996.
94 94 Tang, C., Long, G., Hu, X. et al. (2014). Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale 6: 7877–7888.
95 95 Wu, C., Huang, X., Wang, G. et al. (2013). Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23: 506–513.
96 96 Pang, H., Bao, Y., Xu, L. et al. (2013). Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J. Mater. Chem. A 1: 4177–4181.
97 97 Pang, H., Bao, Y., Yang, S.-G. et al. (2014). Preparation and properties of carbon nanotube/binary-polymer composites with a double-segregated structure. J. Appl. Polym. Sci. 131: 39789.
98 98 Luo, W., Charara, M., Saha, M.C., and Liu, Y. (2019). Fabrication and characterization of porous CNF/PDMS nanocomposites for sensing applications. Appl. Nanosci. 9: 1309–1317.
99 99 Cho, E.-C., Chang-Jian, C.-W., Hsiao, Y.-S. et al. (2016). Three-dimensional carbon nanotube based polymer composites for thermal management. Composites Part A 90: 678–686.
100 100 Zhao, S., Yan, Y., Gao, A. et al. (2018). Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10: 26723–26732.
101 101 Hu, X., Tian, M., Xu, T. et al. (2020). Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 14: 559–567.
102 102 Zhang, S., Liu, H., Yang, S. et al. (2019). Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11: 10922–10932.
103 103 Mates, J.E., Bayer, I.S., Palumbo, J.M. et al. (2015). Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 6: 8874.
104 104 Gao, J., Wu, L., Guo, Z. et al. (2019). A hierarchical carbon nanotube/SiO2 nanoparticle network induced superhydrophobic and conductive coating for wearable strain sensors with superior sensitivity and ultra-low detection limit. J. Mater. Chem. C 7: 4199–4209.
105 105 Ren, M., Zhou, Y., Wang, Y. et al. (2019). Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 360: 762–777.
106 106 Shi, H., Shi, D., Yin, L. et al. (2014). Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 6: 13748–13753.