Polymer Nanocomposite Materials. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Polymer Nanocomposite Materials - Группа авторов страница 24

Polymer Nanocomposite Materials - Группа авторов

Скачать книгу

W.J., Mun, S.C. et al. (2015). Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 7: 6317–6324.

      108 108 Hu, L., Pasta, M., Mantia, F.L. et al. (2010). Stretchable, porous, and conductive energy textiles. Nano Lett. 10: 708–714.

      109 109 Gao, J., Luo, J., Wang, L. et al. (2019). Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364: 493–502.

      110 110 Wang, L., Wang, H., Huang, X.-W. et al. (2018). Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. J. Mater. Chem. A 6: 24523–24533.

      111 111 Lee, J., Shin, S., Lee, S. et al. (2018). Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12: 4259–4268.

      112 112 Wang, L., Chen, Y., Lin, L. et al. (2019). Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 362: 89–98.

      113 113 Lin, L., Wang, L., Li, B. et al. (2020). Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385: 123391.

      114 114 Pu, J.-H., Zhao, X., Zha, X.-J. et al. (2019). Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7: 15913–15923.

      115 115 Zhai, W., Xia, Q., Zhou, K. et al. (2019). Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem. Eng. J. 372: 373–382.

      116 116 Gao, J., Wang, H., Huang, X. et al. (2018). A super-hydrophobic and electrically conductive nanofibrous membrane for a chemical vapor sensor. J. Mater. Chem. A 6: 10036–10047.

      117 117 Flint, E.B. and Suslick, K.S. (1991). The temperature of cavitation. Science 253: 1397–1399.

      118 118 Gao, J., Hu, M., and Li, R.K.Y. (2012). Ultrasonication induced adsorption of carbon nanotubes onto electrospun nanofibers with improved thermal and electrical performances. J. Mater. Chem. 22: 10867–10872.

      119 119 Trung, T.Q. and Lee, N.E. (2016). Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28: 4338–4372.

      120 120 Rinaldi, A., Tamburrano, A., Fortunato, M. et al. (2016). Highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 16: 2148.

      121 121 Yang, H., Yao, X., Yuan, L. et al. (2019). Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 11: 578–586.

      122 122 Cao, X., Lan, Y., Wei, Y. et al. (2015). Tunable resistivity–temperature characteristics of an electrically conductive multi-walled carbon nanotubes/epoxy composite. Mater. Lett. 159: 276–279.

      123 123 Wang, W., Wang, C., Yue, X. et al. (2019). Raman spectroscopy and resistance-temperature studies of functionalized multiwalled carbon nanotubes/epoxy resin composite film. Microelectron. Eng. 214: 50–54.

      124 124 Li, K., Dai, K., Xu, X. et al. (2013). Organic vapor sensing behaviors of carbon black/poly(lactic acid) conductive biopolymer composite. Colloid. Polym. Sci. 291: 2871–2878.

      125 125 Li, J.R., Xu, J.R., Zhang, M.Q., and Rong, M.Z. (2003). Carbon black/polystyrene composites as candidates for gas sensing materials. Carbon 41: 2353–2360.

      126 126 Wang, L., Luo, J., Chen, Y. et al. (2019). Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors. ACS Appl. Mater. Interfaces 11: 17774–17783.

      127 127 Boland, C.S., Khan, U., Backes, C. et al. (2014). Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8: 8819–8830.

      128 128 Zhang, L., He, J., Liao, Y. et al. (2019). A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A 7: 26631–26640.

      129 129 Gao, J., Wang, L., Guo, Z. et al. (2020). Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem. Eng. J. 381: 122778.

      130 130 Li, L., Bai, Y., Li, L. et al. (2017). A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29: 1702517.

      131 131 Liu, S. and Li, L. (2017). Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl. Mater. Interfaces 9: 26429–26437.

      132 132 Kim, S.H., Jung, S., Yoon, I.S. et al. (2018). Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 30: e1800109.

      133 133 Zhang, Y.-Z., Lee, K.H., Anjum, D.H. et al. (2018). MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4: eaat0098.

      134 134 Zhu, D., Handschuh-Wang, S., and Zhou, X. (2017). Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A 5: 16467–16497.

      135 135 Huang, Y., Fan, X., Chen, S.C., and Zhao, N. (2019). Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 29: 1808509.

      136 136 Nie, B., Huang, R., Yao, T. et al. (2019). Textile-based wireless pressure sensor array for human-interactive sensing. Adv. Funct. Mater. 29: 1808786.

      137 137 Li, Y., Samad, Y.A., and Liao, K. (2015). From cotton to wearable pressure sensor. J. Mater. Chem. A 3: 2181–2187.

      138 138 Xue, F., Lu, Y., Qi, X.-d. et al. (2019). Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem. Eng. J. 365: 20–29.

      139 139 Dong, X., Wei, Y., Chen, S. et al. (2018). A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 155: 108–116.

      140 140 Chen, Z., Hu, Y., Zhuo, H. et al. (2019). Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31: 3301–3312.

      141 141 Sun, Q.J., Zhao, X.H., Zhou, Y. et al. (2019). Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29: 1808829.

      142 142 Xia, K., Wang, C., Jian, M. et al. (2017). CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11: 1124–1134.

      143 143 Wu, N., Chen, S., Lin, S. et al. (2018). Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor. J. Mater. Chem. A 6: 5065–5070.

      144 144 Bae, G.Y., Pak, S.W., Kim, D. et al. (2016). Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 28: 5300–5306.

      145 145

Скачать книгу