Data Science. Michael Zimmer
Чтение книги онлайн.
Читать онлайн книгу Data Science - Michael Zimmer страница 17
Mit Blick auf die Business Cases lassen sich daher Data Science & KI-Anwendungsfälle in zwei Hauptzielkategorien einteilen: Ertragssteigerung und Kostensenkung. Im Interesse einer positiven und messbaren Entwicklung sollten von Beginn an konkrete Ziele und nachvollziehbare Qualitätskriterien festgelegt werden. Ertragssteigerung kann in diesem Fall nicht nur eine verbesserte Empfehlung sein, sondern auch der Wandel des Unternehmens zu einem neuen Data-Sciencegetriebenen Geschäftsmodell. Als Beispiel können hier Automobilhersteller fungieren, die sich weg vom Fahrzeughersteller und hin zum Mobilitätsanbieter wandeln.
Aktuelle Studien [Deloitte 2017]5 zeigen, dass Unternehmen im Zuge der Ertragssteigerung mit künstlicher Intelligenz ihre bestehenden Produkte primär verbessern wollen (vgl. Abb. 3–1). Aber auch die Entwicklung neuer Produkte und die Erschließung neuer Märkte stehen im Fokus. Im Zuge der Kostensenkung geht es um die Optimierung der Geschäftsprozesse, um eine verbesserte Entscheidung und die Reduzierung des Personalaufwands durch Automatisierung. Vor dem Hintergrund dieser weit gefächerten Antworten sollte ein Unternehmen genau überlegen, nach welchen Kriterien es seinen Erfolg für Data-Sciencebasierte Anwendungen bemisst und welche Prioritäten der Vorstand verfolgt. Eine sehr innovative Idee ist somit in der Theorie zwar vielleicht genau das Richtige, in einem kostenintensiven Umfeld können die hohen Investitionssummen aber leicht scheitern, wenn nicht die richtigen Erfolgskennzahlen im Vorfeld ausgewählt wurden.
Abb. 3–1 Hauptvorteile für Unternehmen [Deloitte 2017; Abb. 4]
Die Relevanz eines Business Case lässt sich stark vereinfacht an folgendem fiktiven Beispiel verdeutlichen. Gesetzt den Fall, ein Uhrenhersteller will ein innovatives Verfahren der Bilderkennung zur Reduzierung seines Ausschusses (Kostenreduktion) einführen. Das System kostet 500.000 Euro und hat eine Erkennungsrate von 50%, so wird sich das in Tabelle 3–1 dargestellte Szenario 2 erst nach 25 Jahren amortisieren. In aktuellen Data-Science- & KI-Projekten wird häufig ohne Business Case gerechnet. Auf den ersten Blick mag der Aufwand gering erscheinen. Ist der daraus gezogene Nutzen aber zu gering, ist es sinnvoller, die Ressourcen in positivere Business Cases zu investieren.
Szenario 1: ohne Diagnosesystem | Szenario 2: mit Diagnosesystem | |
Preis Rohwerke | 3.000.000 | 3.000.000 |
Preis weitere Bauteile | 2.000.000 | 2.000.000 |
Regulärer Arbeitsaufwand | 4.000.000 | 4.000.000 |
Zusätzlicher Aufwand Defekte | 40.000 | 20.000 |
Kosten Diagnosesystem | 500.000 | |
Einnahmen durch Verkauf | 12.000.000 | 12.000.000 |
Gewinn | 2.960.000 | 2.480.000 |
Tab. 3–1 Rechenbeispiel für Einführung eines Bilderkennungssystems
Künstliche Intelligenz ohne sorgfältige vorherige Prüfung ihrer Nutzbarkeit und Rentabilität zu implementieren, kann bedeuten mit Kanonen auf Spatzen zu schießen. Ist sie allerdings als Investition in einen bewussten Kontext integriert, kann sie auch eine Chance, ein Wegbereiter für Größeres sein und eine neue Herausforderung an Qualitätsmaßstäbe darstellen. In diesem Fall wird aber als KPI nicht der reine Gewinn im Vordergrund stehen. Im Uhrenbeispiel wäre dies der Fall, wenn eine Uhrengruppe bei einer kleinen Marke die neue Technologie erproben will und diese dann später für alle Marken einsetzt.
3.3Realistische Erwartungen und klare Herausforderungen
Data Science und KI wird von vielen Vendoren in praktisch alle Branchen ungeachtet von Kosten-Nutzen-Analysen als Allheilmittel verkauft. Vermeintlich ungeahnte neue Möglichkeiten tun sich den Unternehmen hier auf und ihre Überfülle verstellt oft einen realistischen Blick auf die Herausforderungen, die sie mit sich bringen6:
Ein maschinell lernender Algorithmus wertet historische Daten aus – er wird aus schon beschrittenen Wegen den besten herausfinden, mehr jedoch nicht.
Über die Zuverlässigkeit und Treffsicherheit des Algorithmus bestimmt die Qualität der ihm zugeführten Daten.
Die Möglichkeiten dieser Technologie voll auszuschöpfen gelingt nur, wenn folgende Parameter erfüllt sind:gute Infrastruktur,inhaltliche Kompetenzen,effiziente Arbeitsprozesse, die schnelles iteratives Testen und Weiterentwickeln ermöglichen, undrichtige, vollständige Dokumentation.
Daten unterliegen rechtlichen Bestimmungen – sie entsprechend pflegen zu können erfordert klare Datenmanagementprozesse und -verantwortlichkeiten.
Ohne zuverlässige Methode für die Skalierung in produktiven Systemen wird auch das beste Vorhersagemodell wenig nützlich sein.
Es gibt kein Perpetuum mobile – Ressourcen und Infrastrukturen müssen so eingerichtet sein, dass regelmäßige Qualitätschecks und Retrainings gesichert sind.
Ein maschinell lernender Algorithmus verspricht nicht weniger als automatisierte und eigenständige Lösungen. Auf Basis der ihm zur Verfügung stehenden Daten erkennt er selbsttätig Muster und kann Ableitungen bilden. Durch diese variantenreichen Kombinationen wird neues Wissen kreiert. Doch genau hier ist auch seine entscheidende Grenze – denn neues Wissen ist nicht gleichbedeutend mit neuen Ideen. Menschliche Kreativität hat sich bisher noch nicht in Algorithmen nachbilden lassen und so ist echte Innovation gegen die Möglichkeiten maschinellen Lernens, sprich gegen Optimierungen, abzugrenzen.7
Es schließt sich eine weitere Problematik an. Die Qualität der Ergebnisse, die der Algorithmus ausgibt, ist nur so gut wie die Qualität der Daten, mit denen er arbeitet. Jeder Fehler, jede Inkonsistenz, jede Schwachstelle wird weitergegeben und führt zu fehlgeleiteten, verzerrten Ausgaben, die im schlechtesten Fall falsche Entscheidungen nach sich ziehen. Automatisierung und intelligente Systeme bergen eine trügerische Sicherheit, die nie unterschätzt werden darf und daher umso mehr zu gewissenhafter Datenarchitektur und Datenmanagement anhalten sollte. Eine wesentliche Anforderung bei der Implementierung eines maschinell lernenden