Spatial Impacts of Climate Change. Denis Mercier

Чтение книги онлайн.

Читать онлайн книгу Spatial Impacts of Climate Change - Denis Mercier страница 13

Spatial Impacts of Climate Change - Denis Mercier

Скачать книгу

the spatial extent of the cryosphere (see Chapter 2).

Schematic illustration of positive feedback loops explaining the amplification of Arctic climate warming.

      Figure 1.13. Positive feedback loops explaining the amplification of Arctic climate warming

       (source: design D. Mercier, drawing by F. Bonnaud, Faculty of Arts, Sorbonne University, 2020). For a color version of this figure, see www.iste.co.uk/mercier/climate.zip

      In addition to albedo, Figure 1.12 illustrates the major components of the Earth's radiation budget, which is simplified by an average solar energy input of 342 watts per square meter to the Earth's surface. The percentages of each component (clouds, ocean, land surface, atmosphere) show that only 47% is absorbed (25% by the oceans and 22% by land surfaces). In the evolution of temperature in the lower layers of the atmosphere, the cloud component plays a fundamental role because it absorbs part of the energy (19%) and reflects 20%. Cloud cover and its temporal evolution therefore appear to be an essential element in understanding the evolution of the radiation balance on the Earth's surface.

      AMAP (2017). Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo.

      Bethke, I., Outten, S., Ottera, O.H., Hawkins, E., Wagner, S., Sigl, M., Thorne, P. (2017). Potential volcanic impacts on future climate variability. Nature Climate Change, 7(11), 799-805.

      Bourriquen, M., Mercier, D., Baltzer, A., Fournier, J., Costa, S., Roussel, E. (2018). Paraglacial coasts responses to glacier retreat and associated shifts in river floodplains over decadal timescales (1966-2016), Kongsfjorden, Svalbard. Land Degradation and Development, 29(11), 4173-4185.

      Cheng, L., Abraham, J., Zhu, J., Trenberth, K.E., Fasullo, J., Boyer, T., Locarnini, R., Zhang, B., Yu, F., Wan, L., Chen, X., Song, X., Liu, Y., Mann, M.E. (2020). Record-setting ocean warmth continued in 2019. Advances in Atmospheric Sciences, 37, 137-142.

      Forland, E.J., Benestad, R., Hanssen-Bauer, I., Haugen, J.E., Skaugen, T.E. (2012). Temperature and precipitation development at Svalbard 1900-2100. Advances in Meteorology, 2011(17).

      Hanssen-Bauer, I., Forland, E.J., Hisdal, H., Mayer, S., Sand0, A.B., Sorteberg, A. (2019). Climate in Svalbard 2100 - A knowledge base for climate adaptation. Report, 1/2019, NCCS.

      Humlum, O., Solheim, J.-E., Stordahl, K. (2011). Spectral analysis of the Svalbard temperature record 1912-2010. Advances in Meteorology, 2011.

      IPCC (2014). Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Report, IPCC, Geneva.

      IPCC (2019). Special report on the ocean and cryosphere in a changing climate. [Online]. Available at: https://www.ipcc.ch/srocc.

      Ribes, A., Terray, L. (2015). Le climat du dernier millénaire. La Météorologie, 88, 36-47.

      Lageat, Y. (2019). Les variations du niveau des mers. Presses Universitaires de Bordeaux, Pessac.

      Masson-Delmotte, V., Braconnot, P., Kageyama, M., Sepulchre, P. (2015). Qu'apprend-on des grands changements climatiques passés ? La Météorologie, 88, 25-35.

      Solheim, J.-E., Stordahl, K., Humlum, O. (2011). Solar activity and Svalbard temperatures. Advances in Meteorology, 2012.

      Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B.H., Oppenheimer, C., Lebas, N., Beniston, M., Masson-Delmotte, V. (2015). Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience Letters, 8(10), 784-788.

      Toohey, M. and Sigl, M. (2017). Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data, 9, 809-831 [Online]. Available at: https://doi.org/10.5194/essd-9-809-2017.

      Toohey, M., Krüger, K., Sigl, M., Stordal, F., Svensen, H. (2016). Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Climatic Change, 136, 401-412.

      WMO (2019). The state of greenhouse gases in the atmosphere based on global observations through 2018. Greenhouse Gas Bulletin, 15.

      1 1 https://public.wmo.int.fr.

      2 2 Zetta: one trilliard (1021) or one thousand trillion, according to the international system of units.

      3 3 http://www.climate4you.com/SvalbardTemperatureSince1912.htm.

      4 4 Representative Concentration Pathway (RCP), scenario expressed in watts per square meter.

      2

      Climate Change and the Melting Cryosphere

       Denis Mercier

       Sorbonne University, Paris, France

      Contemporary climate change affects the cryosphere; the thermal changes at stake today are limited compared to the great climatic oscillations that affected the Earth, particularly during the past 2.58 million years of the Quaternary Period. Indeed, the areas concerned, and the volumes of ice are undeniably not of the same order of magnitude. During the great cold periods of the Pleistocene (2,580,000 to

Скачать книгу