Восемь этюдов о бесконечности. Математическое приключение. Хаим Шапира

Чтение книги онлайн.

Читать онлайн книгу Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира страница 4

Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира

Скачать книгу

углах.

      Можно ли покрыть получившуюся сетку всего 31 костяшкой?

      Мои друзья (все они не математики, но по большей части люди весьма умные) в большинстве своем уверены, что можно, – нужно только сообразить, как именно их следует расположить.

      Но правильный ответ на этот вопрос – «нет». Что бы мы ни делали, 31 костяшка домино не может покрыть сетку с удаленными противоположными угловыми клетками.

      Почему это так, немедленно становится ясно, если взять вместо такой незакрашенной сетки черно-белую шахматную доску.

      Как видно на рисунке, каждая костяшка домино может закрыть одну черную клетку и одну белую; поэтому 31 костяшка может закрыть в точности 31 белую клетку и 31 черную. Поскольку две клетки, удаленные с доски, одного и того же цвета – белые, – в обрезанной доске осталось 30 белых клеток и 32 черные. Много лет назад, когда я учился на математическом факультете в Тель-Авиве, я вел для «интересующейся наукой молодежи» курс под названием «Парадоксы, загадки и числа». Я давал эту задачу молодым слушателям своего курса. Каждый раз происходила одна любопытная вещь. Многие ученики решительно не соглашались с доказательством, которое показывает, что 31 костяшка домино не может покрыть доску с удаленными противоположными угловыми клетками. Интересно отметить, что в их число входили и ученики, казалось бы, вполне понимавшие объяснение этого доказательства; тем не менее они упорно раскладывали костяшки домино так и эдак, стараясь покрыть эту самую доску с обрезанными углами. Я даже не пытался убедить их в бессмысленности этого занятия – каждый должен учиться на собственных ошибках.

      История учит нас, что люди и народы ведут себя мудро после того, как они исчерпают все остальные возможности.

Абба Эвен
Головоломка

      Докажите, что, если из шахматной доски удалить любые две клетки разных цветов, все оставшиеся клетки всегда можно покрыть 31 костяшкой домино.

      Бесконечные крестики-нолики

      Когда я учился в начальной школе в Литве, в своем родном Вильнюсе, одним из самых значительных моих достижений было обретение виртуозного умения играть на уроках в стратегические игры с карандашом и бумагой и не попадаться учителям. Моей любимой игрой был бесконечный вариант крестиков-ноликов. Эта игра не раз спасала меня от скуки на занятиях, на которых меня заставляли сидеть.

      Позвольте объяснить вам правила игры.

      Вы, несомненно, знакомы с обычными крестиками-ноликами, в которые играют на поле размером 3 × 3 клетки. Эта игра подходит для детей лет до шести. После этого возраста каждая партия должна неизменно заканчиваться вничью, если только один из игроков не заснет в процессе игры (что, бесспорно, возможно, учитывая, насколько эта игра скучна).

      В бесконечном варианте играют на бесконечном поле, и каждый игрок стремится выстроить

Скачать книгу