100 великих парадоксов. Рудольф Баландин
Чтение книги онлайн.
Читать онлайн книгу 100 великих парадоксов - Рудольф Баландин страница 10
Слова Сальери из «Маленьких трагедий» Пушкина:
Все говорят: нет правды на земле.
Но правды нет и выше. Для меня
Так это ясно, как простая гамма.
Здесь тот же парадокс лжеца. Если правды нет нигде, то слова Сальери – ложь. Значит, правда есть, хоть и лжецов – не счесть.
Парадокс кучи
Его предложил (или первым сформулировал) Евбулид.
Песчинка не может являться кучей – это очевидно. Куча является некоторым количеством песчинок (вещей, предметов). Две частички также нельзя назвать кучей. Куча – это совокупность нескольких объектов и значительно больше двух.
Добавляя по одной песчинке, когда мы получим кучу песка?
Если несколько песчинок, которые не образуют кучу, ничего существенно не изменится, если к ним прибавить ещё одну песчинку. Затем к этой группе добавим ещё одну песчинку, и снова ничего, по сути, не изменится.
Так можно продолжать сколь угодно долго. Когда же настанет тот момент, когда добавление одной песчинки создаст то, что называют кучей песка?
Добавление одной частицы к совокупности, кучей не являющейся, несущественно для образования кучи. Если принять эту предпосылку, никакая совокупность из сколь угодно большого количества песчинок не будет называться кучей, что противоречит бесспорному представлению о существовании кучи песка.
Н.И. Калиниченко постарался доказать, что никакого парадокса «кучи» нет: «Витая в заоблачных высотах формалистики, учёные не видят, что все их научные, предельно абстрагированные и точные понятия и представления взяты из естественного языка, но лишены своих исконных значений и снабжены чисто субъективными определениями, содержащими пределы осведомлённости их авторов. Именно поэтому куча оказалась нечётким множеством, которое изучает целая теория нечётких множеств, а вся современная наука, состоящая из определений, субъективна.
…Даже математик догадается, что куча – это трёхмерное образование. А он ведь знает, что для изображения трёхмерного образования в пространстве нужно не менее четырёх точек, не лежащих в одной плоскости. То есть в принципе математик может сообразить, что и мириады зёрен или камней могут не образовать кучи, если их расстелить тонюсеньким слоем. Но если из четырёх камней или зёрен сложить пирамидку, то это уже будет куча. И что же здесь нечётко? И в чём здесь парадокс?»
Когда же совокупность песчинок превращается в кучу?
Данный автор предлагает своё чёткое определение «кучи». Хотя суть парадокса именно в неопределённости. Пирамидку из четырёх песчинок никто не назовёт кучей. С таким же успехом можно условиться называть кучей груду из более 1934 песчинок.
В том-то и проблема, что речь идёт о совокупности объектов, которых нельзя точно сосчитать. В противном случае так и скажут, например, – «пять песчинок». Будет их немного больше, скажут – «несколько».
Куча