Recent Advances in Polyphenol Research. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Recent Advances in Polyphenol Research - Группа авторов страница 30

Recent Advances in Polyphenol Research - Группа авторов

Скачать книгу

J. (2018) Lemurs may be making medicine out of millipedes. National Geographic, 03 August 2018.

      9 Braga, P.C., Antonacci, R., Wang, Y.Y., et al. (2013). Comparative antioxidant activity of cultivated and wild Vaccinium species investigated by EPR, human neutrophil burst and COMET assay. European Review for Medical and Pharmacological Sciences 17 (15): 1987–1999.

      10 Burns Kraft, T.F., Dey, M., Rogers, et al. (2008). Phytochemical composition and metabolic performance‐enhancing activity of dietary berries traditionally used by native North Americans. Journal of Agricultural and Food Chemistry 56 (3): 654–660.

      11 Buttriss, J. (2012). Plant Foods and Health. In: Phytonutrients (eds. A. Salter, H. Wiseman and G. Tucker), 1–51. Blackwell Publishing Ltd.

      12 Caesar, L. and Cech, N.B. (2019). Synergy and antagonism in natural product extracts: when 1+1 does not equal two. Natural Product Reports 36, 869–888. doi: 10.1039/C9NP00011A.

      13 Cordova, A.C., and Sumpio, B.E. (2009). Polyphenols are medicine: Is it time to prescribe red wine for our patients? The International Journal of Angiology: Official Publication of the International College of Angiology, Inc, 18 (3): 111–117.

      14 Dar, R., Shahnawaz, M., Rasool, S., and Qazi, P. (2017). Natural product medicines: A literature update. J. Phytopharmacol. 6: 340–342.

      15 Densmore, F. (1974). How Indians Use Wild Plants for Food, Medicine and Crafts. New York, New York: Dover Publications.

      16 Dhami, N., and Mishra, A. (2015). Phytochemical variation: How to resolve the quality controversies of herbal medicinal products? Journal of Herbal Medicine 5: 118–127.

      17 Drozdz, P., Seziene, V., and Pyrzynska, K. (2018). Mineral composition of wild and cultivated blueberries. Biological Trace Element Research 181 (1): 173–177.

      18 Dunlap, K.L., Reynolds, A.J., and Duffy, L.K. (2006). Total antioxidant power in sled dogs supplemented with blueberries and the comparison of blood parameters associated with exercise. Comparative Biochemistry and Physiology.Part A, Molecular and Integrative Physiology 143 (4): 429–434.

      19 Engel, C. (2007). Zoopharmacognosy. In: Veterinary Herbal Medicine (eds. S. Wynn, and B. Fougere), 7–15. St. Louis Missouri: Mosby Elsevier.

      20 Esposito, D., Overall, J., Grace, M., et al. (2019). Alaskan berry extracts promote dermal wound repair through modulation of bioenergetics and integrin signaling. Frontiers in Pharmacology 10: 1058. doi: 10.3389/fphar.2019.01058.

      21  Flint, C.G., Robinson, E.S., Kellogg, J., et al. (2011). Promoting wellness in Alaskan villages: Integrating traditional knowledge and science of wild berries. EcoHealth, 8 (2): 199–209.

      22 Goetz, G. (2012). Nutrition a pressing concern for American Indians. Food Safety News 5, March 2012.

      23 Grace, M., Ribnicky, D., Kuhn, P. et al. (2009). Hypoglycemic activity of a novel anthocyanin‐rich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine 16: 406–415.

      24 Grace, M., Esposito, D., Dunlap, K.L., and Lila, M.A. (2014). Comparative analysis of phenolic content and profile, antioxidant capacity, and anti‐inflammatory bioactivity in wild Alaskan and commercial vaccinium berries. Journal of Agricultural and Food Chemistry 62: 4007–4017.

      25 Gustafson, S.J., Yousef, G.G., Grusak, M.A., and Lila, M.A. (2012). Effect of postharvest handling practices on phytochemical concentrations and bioactive potential in wild blueberry fruit. Journal of Berry Research 2: 215–227.

      26 Holdt, S., and Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology 23: 543–597.

      27 Jacobsen, C., Sorensen, A., Holdt, S., et al. (2019). Novel antioxidants from seaweed. Annual Review of Food Science and Technology 10: 541–568.

      28 Joseph, G., Faran, M., Raskin, I., et al. (2014). Medicinal plants of Israel: A model approach to enable an efficient, extensive, and comprehensive field survey. Journal of Biodiversity, Bioprospecting and Development 1: 134.

      29 Karlsons, A., Osvalde, A., Ceksere, G., and Pormale, J. (2018). Research on the mineral composition of cultivated and wild blueberries and cranberries. Agronomy Research 6: 454–463.

      30 Kellogg, J., Croom, B., Plundrich, N., et al. (2016). Engaging American Indian/Alaska Native (AI/AN) students with participatory bioexploration assays. NACTA Journal 60: 42–50.

      31 Kellogg, J., Esposito, D., Grace, M., Komarnytsky, S., and Lila, M. (2015). Alaskan seaweeds lower inflammation in RAW 264.7 macrophages and decrease lipid accumulation in 3T3‐L1 adipocytes. Journal of Functional Foods 15: 396–407.

      32 Kellogg, J., Grace, M.H., and Lila, M.A. (2014). Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity. Marine Drugs 12 (10): 5277–5294.

      33 Kellogg, J., Higgs, C., and Lila, M.A. (2011). Prospects for commercialization of an Alaska native wild resource as a commodity crop. Journal of Entrepreneurship 20: 77–101.

      34 Kellogg, J., and Lila, M.A. (2013). Chemical and in vitro assessment of Alaskan coastal vegetation antioxidant capacity. Journal of Agricultural and Food Chemistry 61 (46): 11025–11032.

      35 Kellogg, J., Wang, J., Flint, C. et al. (2010). Alaskan wild berry resources and human health under the cloud of climate change. Journal of Agricultural and Food Chemistry 58 (7): 3884–3900.

      36 Krebs, J. (2013). Food. A very short introduction. Oxford, UK: Oxford University Press.

      37 Li, Y., Zhang, J.J., Xu, D.P. et al. (2016). Bioactivities and health benefits of wild fruits. International Journal of Molecular Sciences 17 (8): 1258–1285.

      38 Lila, M.A., Burton‐Freeman, B., Grace, M., and Kalt, W. (2016). Unraveling anthocyanin bioavailability for human health. Annual Reviews Food Science and Technology 7: 17.1–17.19.

      39 Lila, M.A., Kellogg, J., Grace, M.H., Yousef, G.G., Kraft, T.B., and Rogers, R.B. (2014). Stressed for success: How the berry’s wild origins result in multifaceted health protections. Acta Horticulturae (ISHS) 1017: 23–43.

      40  Margina, D., Ilie, M., Gradinaru, D., et al. (2015). Natural products—friends or foes? Toxicology Letters, 236 (3): 154–167.

      41 McOliver, C.A., Camper, A.K., Doyle, et al. (2015). Community‐based research as a mechanism to reduce environmental health disparities in American Indian and Alaska Native communities. International Journal of Environmental Research and Public Health 12 (4): 4076–4100.

      42 Moerman, D.E. (1996). An analysis of the food plants and drug plants of Native North America. Journal of Ethnopharmacology 52 (1): 1–22.

      43 Nieman, D.C., Kay, C.D., Rathore, A. et al. (2018). Increased plasma levels of gut‐derived phenolics linked to walking and running following 2‐weeks flavonoid supplementation. Nutrients 10: 1718.

      44 Nieman, D.C., Lila, M.A., and Gillett, N. (2019). Immunometabolism: A multi‐omics approach to interpreting the influence of exercise and diet on the immune system. Annual Reviews Food Science and Technology 10: 6.1–6.23.

      45 Nuno, K., Villarruel‐Lopez, A., Puebla‐Perez, A., et al. (2013). Effects of the marine microalgae Isochrysis galbana and Nannochloropsis ocula in diabetic rats. Journal of Functional Foods 5: 106–115.

      46 Ozgen, M., Serce, S., Gunduz, K., et al. (2007). Determining total phenolics and antioxidant

Скачать книгу