Biomass Valorization. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biomass Valorization - Группа авторов страница 17

Biomass Valorization - Группа авторов

Скачать книгу

Economical Ammonia fiber expansion (AFEX) Higher accessible surface area Inefficient with lignin‐rich biomass Low microbial inhibitors Big ammonia volumes (cost) CO2 explosion Higher accessible surface area No effect on lignin/hemicelluloses network Low microbial inhibitors High pressure (cost, reactor) Economical Wet oxidation Lignin removal Cost ineffective (oxygen and alkaline catalyst) Low microbial inhibitors Energy effective

      The search of a true sustainable chemical industry is driven by the development of processes that rely on not only renewable feedstocks associated with low environmental impact techniques but also economic viability to compete with the well‐established oil and gas markets. To recede the dependency on polluting resources, creative solutions following a green design in the most restringing way are required. The following chapters in this book discuss various methods of biomass valorization, along with their respective challenges and innovative solutions, as means to progress toward chemical sustainability.

      1 1. United Nations Sustainable Development Knowledge Platform. (2019). Sustainable development goals. https://sustainabledevelopment.un.org/sdgs (accessed 20 November 2019).

      2 2. International Council of Chemical Associations. (2019). Sustainable development. https://www.icca-chem.org/sustainable-development/ (accessed 10 September 2019).

      3 3. Speight, J.G. (1999). The Chemistry and Technology of Petroleum. New York: Marcel Dekker.

      4 4. Filiciotto, L. and Luque, R. (2018). Nanocatalysis for green chemistry. In: Encyclopedia of Sustainability Science and Technology (ed. R.A. Meyers), 1–28. New York: Springer.

      5 5. Eerkes‐Medrano, D., Thompson, R.C., and Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75: 63–82. https://doi.org/10.1016/j.watres.2015.02.012.

      6 6. Law, K.L. and Thompson, R.C. (2014). Microplastics in the seas. Science 345 (6193): 144–145. https://doi.org/10.1126/science.1254065.

      7 7. Aboudah, M. (2015). Dealing with economic sustainability challenges evolving from declining oil production in Saudi Arabia. Master thesis. Michigan Technological University.

      8 8. Campbell, C.J. (2013). Campbells Atlas of Oil and Gas Depletion. New York, NY: Springer.

      9 9. Climate Change: Vital Signs of the Planet. (2018). https://climate.nasa.gov/ (accessed 14 November 2019).

      10 10. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100 | UN DESA Department of Economic and Social Affairs. (2017). https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed 14 November 2019).

      11 11. Anastas, P.T. and Warner, J.C. (1998). Green Chemistry Theory and Practice. New York: Oxford University Press.

      12 12. Keijer, T., Bakker, V., and Slootweg, J.C. (2019). Circular chemistry to enable a circular economy. Nature Chemistry 11 (3): 190–195. https://doi.org/10.1038/s41557-019-0226-9.

      13 13. Lanzafame, P., Centi, G., and Perathoner, S. (2014). Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low‐carbon chemical production. Chemical Society Reviews 43 (22): 7562–7580. https://doi.org/10.1039/C3CS60396B.

      14 14. Sheldon, R.A. (2016). Green chemistry and resource efficiency: towards a green economy. Green Chemistry 18 (11): 3180–3183. https://doi.org/10.1039/c6gc90040b.

      15 15. Cong, W.‐F., Jing, J., Rasmussen, J. et al. (2017). Forbs enhance productivity of unfertilised grass‐clover leys and support low‐carbon bioenergy. Scientific Reports 7 (1): 1–10, Article ID 1422. doi: https://doi.org/10.1038/s41598-017-01632-4.

      16 16. Mauser, W., Klepper, G., Zabel, F. et al. (2015). Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nature Communications 6 (1): 1–11, Article ID 8946. doi: https://doi.org/10.1038/ncomms9946.

      17 17. Woodward, F.I., Lomas, M.R., and Kelly, C.K. (2004). Global climate and the distribution of plant biomes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359 (1450): 1465–1476. https://doi.org/10.1098/rstb.2004.1525.

      18 18. Abdel‐Shafy, H.I. and Mansour, M.S.M. (2018). Solid waste issue: sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum 27 (4): 1275–1290.

      19 19. European Commission (2019). Renewable Energy: Bioenergy. http://ec.europa.eu/research/energy/index.cfm?pg=area&areaname=renewable_bio (accessed 10 November 2019).

      20 20. Obermeier, W.A., Lehnert, L.W., Kammann, C.I. et al. (2016). Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nature Climate Change 7 (2): 137–141. https://doi.org/10.1038/nclimate3191.

      21 21. Wu, L., Moteki, T., Gokhale, A.A. et al. (2016). Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1 (1): 32–58. https://doi.org/10.1016/j.chempr.2016.05.002.

      22 22. Mousdale, D.M. (2008). Biofuels: Biotechnology, Chemistry and Sustainable Development. Boca Raton, FL: CRC Press.

      23 23. Ho, D.P., Ngo, H.H., and Guo, W. (2014). A mini review on renewable sources for biofuel. Bioresource Technology 169: 742–749. https://doi.org/10.1016/j.biortech.2014.07.022.

Скачать книгу