Biomass Valorization. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biomass Valorization - Группа авторов страница 19

Biomass Valorization - Группа авторов

Скачать книгу

Rice, F.A.H. (1958). Effect of aqueous sulfuric acid on reducing sugars. V. Infrared studies on the humins formed by the action of aqueous sulfuric acid on the aldopentoses and on the aldehydes derived from them. Journal of Organic Chemistry 23 (3): 465–468. https://doi.org/10.1021/jo01097a036.

      53 53. Hoang, T.M.C., van Eck, E.R.H., Bula, W.P. et al. (2015). Humin based by‐products from biomass processing as a potential carbonaceous source for synthesis gas production. Green Chemistry 17 (2): 959–972. https://doi.org/10.1039/c4gc01324g.

      54 54. Girisuta, B. (2007). Levulinic acid from lignocellulosic biomass. PhD thesis. University of Groningen.

      55 55. Tang, P. and Yu, J. (2014). Kinetic analysis on deactivation of a solid Brønsted acid catalyst in conversion of sucrose to levulinic acid. Industrial & Engineering Chemistry Research 53 (29): 11629–11637. https://doi.org/10.1021/ie501044c.

      56 56. Ferreira‐Leitão, V., Cammarota, M., Aguieiras, E.G. et al. (2017). The protagonism of biocatalysis in green chemistry and its environmental benefits. Catalysts 7 (12): 9. https://doi.org/10.3390/catal7010009.

      57 57. Scott, E. L., Bruins, M. E., and Sanders, J. P. M. (2013). Rules for the biobased production of bulk chemicals on a small scale. Wageningen UR Report BCH 2013/016.

      58 58. Asghari, F.S. and Yoshida, H. (2006). Acid‐catalyzed production of 5‐hydroxymethyl furfural from d‐fructose in subcritical water. Industrial & Engineering Chemistry Research 45 (7): 2163–2173. https://doi.org/10.1021/ie051088y.

      59 59. Roman‐Leshkov, Y. (2006). Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312 (5782): 1933–1937. https://doi.org/10.1126/science.1126337.

      60 60. Watanabe, M., Aizawa, Y., Iida, T. et al. (2005). Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydrate Research 340 (12): 1925–1930. https://doi.org/10.1016/j.carres.2005.06.017.

      61 61. Choudhary, V., Mushrif, S.H., Ho, C. et al. (2013). Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5‐(hydroxymethyl)furfural and levulinic acid in aqueous media. Journal of the American Chemical Society 135 (10): 3997–4006. https://doi.org/10.1021/ja3122763.

      62 62. Filiciotto, L. (2019). Structural insights and valorization of humins: a catalytic approach. PhD thesis. Universidad de Córdoba.

      63 63. Morales, G., Melero, J.A., Paniagua, M. et al. (2014). Sulfonic acid heterogeneous catalysts for dehydration of C6‐monosaccharides to 5‐hydroxymethylfurfural in dimethyl sulfoxide. Chinese Journal of Catalysis 35 (5): 644–655. https://doi.org/10.1016/s1872-2067(14)60020-6.

      64 64. Dias, A.S., Pillinger, M., and Valente, A.A. (2005). Liquid phase dehydration of D‐xylose in the presence of Keggin‐type heteropolyacids. Applied Catalysis A: General 285 (1–2): 126–131. https://doi.org/10.1016/j.apcata.2005.02.016.

      65 65. Soh, L. and Eckelman, M.J. (2016). Green solvents in biomass processing. ACS Sustainable Chemistry & Engineering 4 (11): 5821–5837. https://doi.org/10.1021/acssuschemeng.6b01635.

      66 66. Yara‐Varón, E., Selka, A., Fabiano‐Tixier, A.S. et al. (2016). Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n‐hexane for the extraction of bioactive compounds. Green Chemistry 18 (24): 6596–6608. https://doi.org/10.1039/c6gc02191c.

      67 67. Diallo, A.O., Len, C., Morgan, A.B. et al. (2012). Revisiting physico–chemical hazards of ionic liquids. Separation and Purification Technology 97: 228–234. https://doi.org/10.1016/j.seppur.2012.02.016.

      68 68. Menegazzo, F., Ghedini, E., and Signoretto, M. (2018). 5‐Hydroxymethylfurfural (HMF) production from real biomasses. Molecules 23 (9): 2201. https://doi.org/10.3390/molecules23092201.

      69 69. Cicci, A., Sed, G., Jessop, P.G. et al. (2018). Circular extraction: an innovative use of switchable solvents for the biomass biorefinery. Green Chemistry 20 (17): 3908–3911. https://doi.org/10.1039/c8gc01731j.

      70 70. Fu, D., Farag, S., Chaouki, J. et al. (2014). Extraction of phenols from lignin microwave‐pyrolysis oil using a switchable hydrophilicity solvent. Bioresource Technology 154: 101–108. https://doi.org/10.1016/j.biortech.2013.11.091.

      71 71. Wang, C., Zhang, L., Zhou, T. et al. (2017). Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5‐hydroxymethylfurfural. Scientific Reports 7 (1): 1,, Article ID 40908–9. https://doi.org/10.1038/srep40908.

      72 72. Yu, I.K., Tsang, D.C., Yip, A.C. et al. (2016). Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps. Bioresource Technology 219: 338–347. https://doi.org/10.1016/j.biortech.2016.08.002.

      73 73. Cai, C.M., Nagane, N., Kumar, R. et al. (2014). Coupling metal halides with a co‐solvent to produce furfural and 5‐HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chemistry 16 (8): 3819–3829. https://doi.org/10.1039/c4gc00747f.

      74 74. Choudhary, V., Sandler, S.I., and Vlachos, D.G. (2012). Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media. ACS Catalysis 2 (9): 2022–2028. https://doi.org/10.1021/cs300265d.

      75 75. Agbor, V.B., Cicek, N., Sparling, R. et al. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology Advances 29 (6): 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005.

      76 76. Behera, S., Arora, R., Nandhagopal, N. et al. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36: 91–106. https://doi.org/10.1016/j.rser.2014.04.047.

      77 77. Kumar, A.K. and Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing 4 (1): 1–19, Article ID 7: doi: https://doi.org/10.1186/s40643-017-0137-9.

      78 78. Den, W., Sharma, V.K., Lee, M. et al. (2018). Lignocellulosic

Скачать книгу