Biomass Valorization. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biomass Valorization - Группа авторов страница 22

Biomass Valorization - Группа авторов

Скачать книгу

      Apart from carbohydrate polymers, lignin is known to transform into a range of useful phenol derivatives under acid‐catalyzed conditions, but the overall role of the catalysis is less well understood for these processes [5,8,9]. These bio‐based molecules may potentially generate a renewable platform that produces large volumes of green replacements to crude oil‐based products, such as fuels, monomers for plastics, detergents, and other commodity products [113]. In the rest of this chapter, we will concentrate only on those transformations where acid catalysts display notable advantages over other types of catalysts. Effectively, this approach focuses on lignocellulosic materials.

      Cellulose is the most naturally abundant macromolecule on the Earth [36]. Even if this view is contested, lignocellulose is the only large volume biomass to which we have ready access on large industrial scale and where there is a globally distributed large volume industry and supply chain [4]. Cellulose consists of β(1 → 4) linearly linked glucose units and is a principal portion of plant cell walls. Hemicellulose is another polysaccharide present in lignocellulose and is often made of structurally branched xylose units and sometimes other moieties [6,16,31]. The past few decades have witnessed a significant interest in the acid‐catalyzed processing of cellulosic substances into organic building block chemicals (platform molecules), such as 5‐(hydroxymethyl)furfural (HMF), furfural (FF), levulinic acid (LevA), LacA, and their many derivatives [4].

Скачать книгу