Biomass Valorization. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Biomass Valorization - Группа авторов страница 18
25 25. Achinas, S. and Euverink, G.J.W. (2016). Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electronic Journal of Biotechnology 23: 44–53. https://doi.org/10.1016/j.ejbt.2016.07.006.
26 26. Lee, W.C. and Kuan, W.C. (2015). Miscanthusas cellulosic biomass for bioethanol production. Biotechnology Journal 10 (6): 840–854. https://doi.org/10.1002/biot.201400704.
27 27. Stoffel, R.B., Neves, P.V., Felissia, F.E. et al. (2017). Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass and Bioenergy 107: 93–101. https://doi.org/10.1016/j.biombioe.2017.09.019.
28 28. Wilkinson, S., Smart, K.A., James, S. et al. (2016). Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. BioEnergy Research 10 (1): 146–157. https://doi.org/10.1007/s12155-016-9782-7.
29 29. Prasetyo, J., Naruse, K., Kato, T. et al. (2011). Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels 4 (1): 35. https://doi.org/10.1186/1754-6834-4-35.
30 30. Sims, R.E., Mabee, W., Saddler, J.N. et al. (2010). An overview of second generation biofuel technologies. Bioresource Technology 101 (6): 1570–1580. https://doi.org/10.1016/j.biortech.2009.11.046.
31 31. Pierobon, S.C., Cheng, X., Graham, P.J. et al. (2018). Emerging microalgae technology: a review. Sustainable Energy Fuels 2: 13–38. https://doi.org/10.1039/C7SE00236J.
32 32. Koller, M., Salerno, A., Tuffner, P. et al. (2012). Characteristics and potential of micro algal cultivation strategies: a review. Journal of Cleaner Production 37: 377–388. https://doi.org/10.1016/j.jclepro.2012.07.044.
33 33. Singh, A. and Olsen, S.I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy 88 (10): 3548–3555. https://doi.org/10.1016/j.apenergy.2010.12.012.
34 34. Aro, E.‐M. (2015). From first generation biofuels to advanced solar biofuels. AMBIO 45 (S1): 24–31. https://doi.org/10.1007/s13280-015-0730-0.
35 35. Moravvej, Z., Makarem, M.A., and Rahimpour, M.R. (2019). The fourth generation of biofuel. In: Second and Third Generation of Feedstocks‐The evolution of biofuels (eds. A. Basile and F. Dalena), 557–597. Amsterdam: Elsevier.
36 36. Camia, A., Robert, N., Jonsson, R. et al. (2018). Biomass production, supply, uses and flows in the European Union. JRC Science for policy report https://doi.org/10.2760/539520.
37 37. Xu, C., Nasrollahzadeh, M., Selva, M. et al. (2019). Waste‐to‐wealth: biowaste valorization into valuable bio(nano)materials. Chemical Society Reviews 48: 4791–4822. https://doi.org/10.1039/C8CS00543E.
38 38. Lin, C.S.K. (2018). Chemistry and Chemical Technologies in Waste Valorization. Cham: Springer.
39 39. Seyboth, K., Matschoss, P., Kadner, S. et al. (2012). Intergovernmental panel on climate change. In: Renewable Energy Souces and Climate Change Mitigation (eds. O. Edenhofer, R.P. Madruga and Y. Sokona), 161–208. New York: Cambridge University Press.
40 40. Wang, M., Dewil, R., Maniatis, K. et al. (2019). Biomass‐derived aviation fuels: challenges and perspective. Progress in Energy and Combustion Science 74: 31–49.
41 41. Vassilev, S.V., Baxter, D., Andersen, L.K. et al. (2012). An overview of the organic and inorganic phase composition of biomass. Fuel 94: 1–33. https://doi.org/10.1016/j.fuel.2011.09.030.
42 42. Zabed, H., Sahu, J., Suely, A. et al. (2017). Bioethanol production from renewable sources: current perspectives and technological progress. Renewable and Sustainable Energy Reviews 71: 475–501. https://doi.org/10.1016/j.rser.2016.12.076.
43 43. Bruyn, M.D., Fan, J., Budarin, V.L. et al. (2016). A new perspective in bio‐refining: levoglucosenone and cleaner lignin from waste biorefinery hydrolysis lignin by selective conversion of residual saccharides. Energy & Environmental Science 9 (8): 2571–2574. https://doi.org/10.1039/c6ee01352j.
44 44. Werpy, T.A., Holladay, J.E., and White, J.F. (2004). Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Oak Ridge (TN): Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL).
45 45. Bozell, J.J. and Petersen, G.R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy's “Top 10” revisited. Green Chemistry 12 (4): 539. https://doi.org/10.1039/b922014c.
46 46. Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemical Society Reviews 41 (4): 1538–1558. https://doi.org/10.1039/c1cs15147a.
47 47. Isikgor, F.H. and Becer, C.R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio‐based chemicals and polymers. Polymer Chemistry 6 (25): 4497–4559. https://doi.org/10.1039/c5py00263j.
48 48. Spierling, S., Knüpffer, E., Behnsen, H. et al. (2018). Bio‐based plastics – a review of environmental, social and economic impact assessments. Journal of Cleaner Production 185: 476–491. https://doi.org/10.1016/j.jclepro.2018.03.014.
49 49. YXY Technology. (2019). https://www.avantium.com/renewable-polymers/yxy-technology/ (accessed 10 September 2019).
50 50. Liu, B. and Zhang, Z. (2016). One‐pot conversion of carbohydrates into furan derivatives via furfural and 5‐hydroxylmethylfurfural as intermediates. ChemSusChem 9 (16): 2015–2036. https://doi.org/10.1002/cssc.201600507.
51 51. Van Zandvoort, I., Wang, Y., Rasrendra, C.B. et al. (2013). Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6 (9): 1745–1758. https://doi.org/10.1002/cssc.201300332.