Biomass Valorization. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Biomass Valorization - Группа авторов страница 34
References
1 1. Corma, A., Iborra, S., and Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews 107 (6): 2411–2502.
2 2. Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemical Society Reviews 41 (4): 1538–1558.
3 3. Dusselier, M., Mascal, M., and Sels, B.F. (2014). Top chemical opportunities from carbohydrate biomass: a chemist's view of the biorefinery. In: Selective Catalysis for Renewable Feedstocks and Chemicals (ed. K.M. Nicholas), 1–40. Cham: Springer.
4 4. Bodachivskyi, I., Kuzhiumparambil, U., and Williams, D.B.G. (2018). Acid‐catalyzed conversion of carbohydrates into value‐added small molecules in aqueous media and ionic liquids. ChemSusChem 11 (4): 642–660.
5 5. Han, X., Guo, Y., Liu, X. et al. (2019). Catalytic conversion of lignocellulosic biomass into hydrocarbons: a mini review. Catalysis Today 319: 2–13.
6 6. Negahdar, L., Delidovich, I., and Palkovits, R. (2016). Aqueous‐phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: insights into the kinetics and reaction mechanism. Applied Catalysis B: Environmental 184: 285–298.
7 7. Bodachivskyi, I., Kuzhiumparambil, U., and Williams, D.B.G. (2019). A systematic study of metal triflates in catalytic transformations of glucose in water and methanol: identifying the interplay of Brønsted and Lewis acidity. ChemSusChem 12 (14): 3263–3270.
8 8. Galkin, M.V. and Samec, J.S. (2016). Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9 (13): 1544–1558.
9 9. Agarwal, A., Rana, M., and Park, J.H. (2018). Advancement in technologies for the depolymerization of lignin. Fuel Processing Technology 181: 115–132.
10 10. Corma, A., Hamid, S.B., Iborra, S., and Velty, A. (2008). Surfactants from biomass: a two‐step cascade reaction for the synthesis of sorbitol fatty acid esters using solid acid catalysts. ChemSusChem 1 (1–2): 85–90.
11 11. Cermak, S.C., Isbell, T.A., Bredsguard, J.W., and Thompson, T.D. (2017). Estolides: synthesis and applications. In: Fatty Acids (ed. M.U. Ahmad), 431–475. London: AOCS Press.
12 12. Jamil, M.A., Siddiki, S.H., Touchy, A.S. et al. (2019). Selective transformations of triglycerides into fatty amines, amides, and nitriles by using heterogeneous catalysis. ChemSusChem 12 (13): 3115–3125.
13 13. De Schouwer, F., Claes, L., Vandekerkhove, A. et al. (2019). Protein‐rich biomass waste as a resource for future biorefineries: state of the art, challenges, and opportunities. ChemSusChem 12 (7): 1272–1303.
14 14. Hagen, J. (2015). Industrial Catalysis: A Practical Approach, 3e. Weinheim: Wiley‐VCH.
15 15. Loque, D., Scheller, H.V., and Pauly, M. (2015). Engineering of plant cell walls for enhanced biofuel production. Current Opinion in Plant Biology 25: 151–161.
16 16. Heinze, T., El Seoud, O.A., and Koschella, A. (2018). Production and characteristics of cellulose from different sources. In: Cellulose Derivatives (eds. T. Heinze, O.A. El Seoud and A. Koschella), 1–38. Cham: Springer.
17 17. Adhikari, S. and Ozarska, B. (2018). Minimizing environmental impacts of timber products through the production process “From Sawmill to Final Products”. Environmental Systems Research 7 (1): 6.
18 18. Cornils, B., Herrmann, W.A., and Zanthoff, H.W. (eds.) (2013). Catalysis from A to Z. New York: Wiley‐VCH.
19 19. Lowry, T.H. and Richardson, K.S. (1987). Mechanism and Theory in Organic Chemistry. New York: Harper & Row.
20 20. Yamamoto, H. and Futatsugi, K. (2005). “Designer acids”: combined acid catalysis for asymmetric synthesis. Angewandte Chemie International Edition 44 (13): 1924–1942.
21 21. Williams, D.B.G. and Lawton, M. (2010). Metal triflates: on the question of Lewis versus Brønsted acidity in retinyl carbocation formation. Journal of Molecular Catalysis A: Chemical 317 (1–2): 68–71.
22 22. Olah, G.A., Prakash, G.S., Sommer, J., and Molnar, A. (2009). Superacid Chemistry. Hoboken: Wiley.
23 23. Onwukamike, K.N., Grelier, S., Grau, E. et al. (2019). Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustainable Chemistry & Engineering 7 (2): 1826–1840.
24 24. Melero, J.A., Iglesias, J., and Garcia, A. (2012). Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy & Environmental Science 5: 7393–7420.
25 25. Holkar, C.R., Jain, S.S., Jadhav, A.J., and Pinjari, D.V. (2018). Valorization of keratin based waste. Process Safety and Environmental Protection 115: 85–98.
26 26. Sivasamy, A., Cheah, K.Y., Fornasiero, P. et al. (2009). Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem 2 (4): 278–300.
27 27. Yaakob, Z., Mohammad, M., Alherbawi, M. et al. (2013). Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews 18: 184–193.
28 28. Hess, S.K., Schunck, N.S., Goldbach, V. et al. (2017). Valorization of unconventional lipids from microalgae or tall oil via a selective dual catalysis one‐pot approach. Journal of the American Chemical Society 139 (38): 13487–13491.
29 29. Mlynarski, J. and Gut, B. (2012). Organocatalytic synthesis of carbohydrates. Chemical Society Reviews 41: 587–596.
30 30. Brethauer, S. and Wyman, C.E. (2010). Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology 101 (13): 4862–4874.
31 31. Meng, X., Pu, Y., Yoo, C.G. et al. (2017). An in‐depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. ChemSusChem 10 (1): 139–150.
32 32. Renders, T., Van den Bosch, S., Koelewijn, S.F. et al. (2017). Lignin‐first biomass fractionation: the advent of active stabilisation strategies. Energy & Environmental Science 10: 1551–1557.
33 33. Van den Bosch, S., Schutyser, W., Vanholme, R. et al. (2015). Reductive lignocellulose fractionation into soluble lignin‐derived phenolic monomers and dimers and processable carbohydrate pulps. Energy & Environmental Science 8: 1748–1763.
34 34. Binder, J.B. and Raines, R.T. (2010). Fermentable sugars by chemical hydrolysis of biomass. Proceedings of the National Academy of Sciences of the United States of America