Biomass Valorization. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biomass Valorization - Группа авторов страница 36

Biomass Valorization - Группа авторов

Скачать книгу

Villandier, N. and Corma, A. (2010). One pot catalytic conversion of cellulose into biodegradable surfactants. Chemical Communications 46: 4408–4410.

      73 73. Villandier, N. and Corma, A. (2011). Transformation of cellulose into biodegradable alkyl glycosides by following two different chemical routes. ChemSusChem 4 (4): 508–513.

      74 74. Puga, A.V. and Corma, A. (2014). Efficient production and separation of biodegradable surfactants from cellulose in 1‐butyl‐3‐methylimidazolium chloride. ChemSusChem 7 (12): 3362–3373.

      75 75. Van Putten, R.J., van der Waal, J.C., de Jong, E.D. et al. (2013). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews 113 (3): 1499–1597.

      76 76. Mariscal, R., Maireles‐Torres, P., Ojeda, M. et al. (2016). Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science 9: 1144–1189.

      77 77. van Zandvoort, I., Wang, Y., Rasrendra, C.B. et al. (2013). Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6 (9): 1745–1758.

      78 78. Hoang, T.M., Lefferts, L., and Seshan, K. (2013). Valorization of humin‐based byproducts from biomass processing—a route to sustainable hydrogen. ChemSusChem 6 (9): 1651–1658.

      79 79. Zhao, H., Holladay, J.E., Brown, H., and Zhang, Z.C. (2007). Metal chlorides in ionic liquid solvents convert sugars to 5‐hydroxymethylfurfural. Science 316 (5831): 1597–1600.

      80 80. Choudhary, V., Mushrif, S.H., Ho, C. et al. (2013). Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5‐(hydroxymethyl)furfural and levulinic acid in aqueous media. Journal of the American Chemical Society 135 (10): 3997–4006.

      81 81. King, A.W.T., Asikkala, J., Mutikainen, I. et al. (2011). Distillable acid‐base conjugate ionic liquids for cellulose dissolution and processing. Angewandte Chemie International Edition 50 (28): 6301–6305.

      82 82. Sen, S., Losey, B.P., Gordon, E.E. et al. (2016). Ionic liquid character of zinc chloride hydrates define solvent characteristics that afford the solubility of cellulose. The Journal of Physical Chemistry B 120 (6): 1134–1141.

      83 83. Cao, N.J., Xu, Q., and Chen, L.F. (1995). Acid hydrolysis of cellulose in zinc chloride solution. Applied Biochemistry and Biotechnology 51 (1): 21–28.

      84 84. de Almeida, R.M., Li, J., Nederlof, C. et al. (2010). Cellulose conversion to isosorbide in molten salt hydrate media. ChemSusChem 3 (3): 325–328.

      85 85. Schestakow, M., Karadagli, I., and Ratke, L. (2016). Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydrate Polymers 137: 642–649.

      86 86. Bodachivskyi, I., Kuzhiumparambil, U., and Williams, D.B.G. (2019). Acid‐catalysed conversion of carbohydrates into furan‐type molecules in zinc chloride hydrate. ChemPlusChem 84 (4): 352–357.

      87 87. Bi, Z., Lai, B., Zhao, Y., and Yan, L. (2018). Fast disassembly of lignocellulosic biomass to lignin and sugars by molten salt hydrate at low temperature for overall biorefinery. ACS Omega 3 (3): 2984–2993.

      88 88. Abbott, A.P., Boothby, D., Capper, G. et al. (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society 126 (29): 9142–9147.

      89 89. Mamilla, J.L.K., Novak, U., Grilc, M., and Likozar, B. (2019). Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value‐added bio‐based chemicals. Biomass and Bioenergy 120: 417–425.

      90 90. Sirviö, J.A., Visanko, M., and Liimatainen, H. (2016). Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17 (9): 3025–3032.

      91 91. Yu, W., Wang, C., Yi, Y. et al. (2019). Choline chloride‐based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers. Cellulose 26 (5): 3069–3082.

      92 92. Tang, X., Zuo, M., Li, Z. et al. (2017). Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. ChemSusChem 10 (13): 2696–2706.

      93 93. Gericke, M., Fardim, P., and Heinze, T. (2012). Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17 (6): 7458–7502.

      94 94. Wang, B., Qin, L., Mu, T. et al. (2017). Are ionic liquids chemically stable? Chemical Reviews 117: 7113–7131.

      95 95. Fitzpatrick, S.W., inventor and Biofine Inc., assignee (1997). Production of levulinic acid from carbohydrate‐containing materials. US Patent 5,608,105. 4 March 1997.

      96 96. Fitzpatrick, S.W., inventor and Biofine Tech LLC, assignee (2016). Production of formic acid. US Patent 9,481,626. 1 November 2016.

      97 97. Hayes, D.J., Fitzpatrick, S., Hayes, M.H.B., and Ross, J.R.H. (2006). The biofine process – production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Biorefineries–Industrial Processes and Product: Status Quo and Future Directions (eds. B. Kamm, P.R. Gruber and M. Kamm), 139–164. Weinheim: Wiley‐VCH.

      98 98. Weingarten, R., Conner, W.C., and Huber, G.W. (2012). Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy & Environmental Science 5: 7559–7574.

      99 99. Wang, K., Jiang, J., Liang, X. et al. (2018). Direct conversion of cellulose to levulinic acid over multifunctional sulfonated humins in sulfolane–water solution. ACS Sustainable Chemistry & Engineering 6 (11): 15092–15099.

      100 100. Albert, J., Wölfel, R., Bösmann, A., and Wasserscheid, P. (2012). Selective oxidation of complex, water‐insoluble biomass to formic acid using additives as reaction accelerators. Energy & Environmental Science 5: 7956–7962.

      101 101. Tominaga, K.I., Mori, A., Fukushima, Y. et al. (2011). Mixed‐acid systems for the catalytic synthesis of methyl levulinate from cellulose. Green Chemistry 13: 810–812.

      102 102. Démolis, A., Essayem, N., and Rataboul, F. (2014). Synthesis and applications of alkyl levulinates. ACS Sustainable Chemistry & Engineering 2 (6): 1338–1352.

      103 103. Bodachivskyi, I., Kuzhiumparambil, U., and Williams, D.B.G. (2019). Metal triflates are tunable acidic catalysts for high yielding conversion of cellulosic biomass into ethyl levulinate. Fuel Processing Technology 195 https://doi.org/10.1016/j.fuproc.2019.106159.

      104 104. Wang, F.‐F., Liu, C.‐L., and Dong, W.‐S. (2013). Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chemistry 15: 2091–2095.

      105 105. Verma, D., Insyani, R., Suh, Y.‐W. et al. (2017). Direct conversion of cellulose to high‐yield methyl lactate over Ga‐doped Zn/H‐nanozeolite Y catalysts in supercritical methanol. Green Chemistry 19: 1969–1982.

      106 106. Yang, L., Yang, X., Tian, E., and Lin, H. (2016). Direct conversion of cellulose into ethyl lactate in supercritical ethanol–water solutions. ChemSusChem 9 (1): 36–41.

      107 107. Zan, Y., Sun, Y., Kong, L. et al. (2018). Formic acid‐induced controlled‐release hydrolysis of microalgae (Scenedesmus)

Скачать книгу