Mathématiques et Mathématiciens: Pensées et Curiosités. Alphonse Rebière
Чтение книги онлайн.
Читать онлайн книгу Mathématiques et Mathématiciens: Pensées et Curiosités - Alphonse Rebière страница 9
Condillac.
Parmi les mathématiciens, les uns ont une prédilection exclusive pour les symboles les plus généraux et les plus abstraits et ils évitent les interprétations géométriques, comme imparfaites et limitées; les autres, au contraire, ne jugent claires, que celles des conceptions analytiques qui sont susceptibles d'une traduction concrète. Il faut avouer que ces derniers se font une idée bien étroite de la science de l'ordre.
L'algèbre est la plus générale des sciences mathématiques, puisqu'elle étudie non pas telle ou telle quantité, mais la quantité.
La géométrie n'est qu'une science mathématique particulière, puisque son objet, l'étendue, n'est qu'une sorte de quantité.
L'algèbre est à la fois un art et une science: une science parce qu'elle se compose d'un ensemble de vérités; et un art, parce qu'elle fournit un grand nombre de règles infaillibles pour résoudre un grand nombre de difficultés.
Arrivé à ce point, Descartes fut naturellement amené à penser que toute question de géométrie pouvait se ramener à une question d'algèbre, et il conjectura justement qu'à cause du caractère méthodique de l'algèbre une telle substitution serait toujours ou du moins presque toujours avantageuse. Telles furent les vues à la fois très élevées et très simples qui firent concevoir à Descartes le dessein d'appliquer l'algèbre à la géométrie.
...........................
Les sciences mathématiques ne furent plus un assemblage de spéculations isolées; elles formèrent un corps dans lequel les parties furent dans une dépendance mutuelle et facile à saisir.
T. V. Charpentier.
En géométrie, comme en algèbre, la plupart des idées différentes ne sont que des transformations; les plus lumineuses et les plus fécondes sont pour nous celles qui font le mieux image et que l'esprit combine avec le plus de facilité dans le discours et dans le calcul.
Le calcul n'est qu'un instrument qui ne produit rien par lui-même, et qui ne rend en quelque sorte que les idées qu'on lui confie. Si nous n'avons que des idées imparfaites, ou si l'esprit ne regarde la question que d'un point de vue borné, ni l'analyse, ni le calcul ne lui apporteront plus de lumière, et ne donneront à nos résultats plus de justesse ou plus d'étendue: au contraire, on peut dire que cet art de réaliser en quelque sorte par le calcul de vagues conceptions n'est propre qu'à rendre l'erreur plus durable, en lui donnant pour ainsi dire une consistance.
Sitôt qu'un auteur ingénieux a su parvenir directement et simplement à quelque vérité nouvelle, n'est-il pas à craindre que le calculateur le plus stérile ne s'empresse d'aller la chercher dans ses formules comme pour la découvrir une seconde fois et à sa manière, qu'il dit être la bonne et la véritable; de sorte qu'on ne s'en croit plus redevable qu'à son analyse, et que l'auteur lui-même, quelquefois peu exercé à ce langage et à ce symbole, sous lesquels on lui dérobe ses idées, ose à peine réclamer ce qui lui appartient et se retire presque confus, comme s'il avait mal inventé ce qu'il a si bien découvert.
Poinsot.
Les ressources puissantes que la Géométrie a acquises depuis une trentaine d'années sont comparables, sous plusieurs rapports, aux méthodes analytiques, avec lesquelles cette science peut rivaliser désormais, sans désavantage, dans un ordre très étendu de questions...
... Hâtons-nous de dire, cependant, pour éviter toute interprétation inexacte de notre but et de notre sentiment sur les deux méthodes qui se partagent le domaine des sciences mathématiques, que notre admiration pour l'instrument analytique, si puissant de nos jours, est sans bornes, et que nous n'entendons pas lui mettre en parallèle sur tous les points, la méthode géométrique. Mais, convaincu qu'on ne saurait avoir trop de moyens d'investigation dans la recherche des vérités mathématiques, qui toutes peuvent devenir également faciles et intuitives quand on a trouvé et suivi la voie étroite qui leur est propre et naturelle, nous avons pensé qu'il ne pouvait être qu'utile de montrer... que les doctrines de la pure Géométrie offrent souvent, et dans une foule de questions, cette voie simple et nouvelle qui, pénétrant jusqu'à l'origine des vérités, met à nu la chaîne mystérieuse qui les unit entre elles et les fait connaître individuellement de la manière la plus lumineuse et la plus complète.
Cette troisième branche de la Géométrie, qui constitue aujourd'hui ce que nous appelons la Géométrie récente, est exempte de calculs algébriques, quoiqu'elle fasse un aussi heureux usage des relations numériques des figures que de leurs relations de situation; mais elle ne considère que des rapports de distance rectiligne, d'un certain genre, qui n'exigent ni les symboles, ni les opérations de l'Algèbre. Cette Géométrie est la continuation de l'Analyse géométrique des Anciens, sur laquelle elle offre d'immenses avantages par la généralité, l'uniformité et l'abstraction de ses méthodes.
La méthode par le calcul a le merveilleux privilège de négliger les propositions intermédiaires dont la méthode géométrique a toujours besoin, et qu'il faut créer quand la question est nouvelle. Mais cet avantage si beau et si précieux de l'Analyse a son côté faible, comme toutes les conceptions humaines: c'est que cette marche pénétrante et rapide n'éclaire pas toujours suffisamment l'esprit; elle laisse ignorer les vérités intermédiaires qui rattachent le point de départ à la vérité trouvée, et qui doivent former avec l'un et l'autre, un ensemble complet et une véritable théorie. Car, est-ce assez dans l'étude philosophique et approfondie d'une science, de savoir qu'une chose est vraie, si l'on ignore comment et pourquoi elle l'est, et quelle place elle occupe dans l'ordre des vérités auquel elle appartient?
Chasles.
Il est certain que l'analyse de situation est une chose qui manque à l'algèbre ordinaire: c'est ce défaut qui fait qu'un problème paraît souvent avoir plus de solutions qu'il n'en doit avoir dans les circonstances où on le considère. Il est vrai que cette abondance de l'algèbre, qui donne ce qu'on ne lui demande pas, est admirable à plusieurs égards; mais aussi elle fait souvent qu'un problème qui n'a réellement qu'une solution, en prenant son énoncé à la rigueur, se trouve renfermé dans une équation de plusieurs dimensions et, par là, ne peut en quelque manière être résolu. Il serait fort à souhaiter que l'on trouvât moyen de faire entrer la situation dans le calcul des problèmes.
d'Alembert.
La géométrie et l'algèbre ont entre elles des relations nécessaires sur lesquelles il importe d'être fixé.
Faut-il ériger en principe les vues de Pythagore sur les nombres, puis essayer d'y rattacher les vues géométriques?
Faut-il, au contraire, suivre la voie tracée par Descartes et déduire