Cultivar con microbios. Jeff Lowenfels

Чтение книги онлайн.

Читать онлайн книгу Cultivar con microbios - Jeff Lowenfels страница 10

Автор:
Серия:
Издательство:
Cultivar con microbios - Jeff Lowenfels General

Скачать книгу

Estas partículas se llaman iones. Los iones con una carga positiva (+) se llaman cationes y los que tienen una negativa (−) aniones. Las partículas cargadas positivamente se ven atraídas eléctricamente a las negativas. Esto es exactamente lo que ocurre cuando los extremos opuestos de un imán se atraen mutuamente. Cuando un catión cargado positivamente se junta con un anión cargado negativamente, el catión es «absorbido» por el anión. Incluso los microrganismos del suelo son lo suficientemente pequeños para tener y verse influenciados por las cargas eléctricas.

      Las partículas de arena son demasiado grandes para tener cargas eléctricas, pero tanto las partículas de arcilla como las de humus son lo suficientemente pequeñas para tener muchos aniones cargados negativamente que atraen a los cationes cargados positivamente. Los cationes que se ven absorbidos por la arcilla y el humus incluyen el calcio (Ca++), potasio (K+), sodio (Na+), magnesio (Mg++), hierro (Fe+), amonio (NH4+) e hidrógeno (H+). Todos estos son importantes nutrientes para las plantas, y se retienen en el suelo gracias a estos dos componentes de un buen suelo. La atracción de estos cationes a las partículas de arcilla y humus es tan fuerte que, cuando una solución que los contenga entra en contacto, la atracción es total y tan solo un 1 % de los nutrientes del catión permanecen en la solución.

      También hay aniones en el suelo. Estos incluyen el cloruro (Cl−), nitrato (NO3−), sulfato (SO4−) y fosfato (PO4−), todos ellos nutrientes de las plantas. Desgraciadamente, los aniones del suelo se ven repelidos por la carga negativa de las partículas de arcilla y humus y, por tanto, permanecen en la solución en vez de ser absorbidos. A menudo, estos nutrientes de las plantas se encuentran ausentes de los suelos de los jardines, pues son lixiviados en la solución del suelo cuando llueve o se riega el suelo: nada los retiene a las superficies del suelo.

      Capacidad de intercambio catiónico (cic) para varias texturas del suelo. Tom Hoffman Graphic Design.

      ¿Qué importancia tiene esto? Las superficies de los pelos radiculares tienen sus propias cargas eléctricas. Cuando un pelo radicular entra en el suelo, puede intercambiar sus propios cationes por los que están adheridos a las partículas de arcilla o humus y entonces absorber el nutriente catiónico implicado. Las raíces usan cationes de hidrógeno (H+) como su moneda de cambio, entregando un catión de hidrógeno por cada catión de nutriente absorbido. Esto mantiene el equilibrio de cargas igual. Así es como «comen» las plantas.

      El lugar donde ocurre el intercambio de un catión se conoce como el complejo de intercambio del suelo, y el número de estos lugares mide la capacidad del suelo para retener nutrientes, o la capacidad de intercambio catiónico (cic). La cic de un suelo es simplemente la suma de la reposición de los nutrientes con carga positiva que puede absorber por unidad de peso o volumen. La cic se mide en miliequivalentes (meq) en 100 gr de suelo. Lo que necesita saber el jardinero es que, cuanto más elevado es el número de la cic, más nutrientes puede retener un suelo y, por tanto, lo adecuado que resulta para cultivar plantas. Cuanto más alta es la cic, más fértil es el suelo. Puedes pedir que un laboratorio profesional del suelo mida la cic de tu suelo.

      La cic del suelo depende, en parte, de su textura. La arena y el limo tienen una cic baja porque las partículas son demasiado grandes para verse influenciadas por una carga eléctrica y retener nutrientes. La arcilla y las partículas orgánicas confieren una cic elevada a los suelos porque tienen muchas cargas eléctricas: cuanto más humus y, hasta cierto punto, arcilla estén presentes en los suelos, más nutrientes podrán almacenar, y de ahí que los jardineros busquen más materia orgánica para sus terrenos.

      Pero todo, incluso lo bueno, tiene su límite. No olvides que las partículas de arcilla son extremadamente pequeñas: demasiada arcilla y poco humus da como resultado una cic alta pero poco aire en el suelo, porque la porosidad es demasiado pequeña y se ve cortada por la estructura laminar de la arcilla. Un suelo así tiene una buena cic pero un drenaje pobre. Por tanto, no basta con saber solo la cic; tienes que conocer la textura y mezcla del suelo.

      El pH del suelo

      La mayoría de nosotros tiene una comprensión básica del pH como una manera de medir los líquidos para ver si son ácidos o no. En una escala del 1 al 14, un pH 1 es muy ácido y un pH 14 alcalino (o básico), lo opuesto a ácido. El pH nos dice la concentración iones de hidrógeno (H+, un catión) en la solución que se está midiendo. Si tienes muchos iones de hidrógeno en comparación al resto de lo hay en la solución, el pH es bajo y la solución es ácida. Igualmente, si tienes relativamente pocos iones de hidrógenos en la solución, entonces esta tiene un pH alto y es alcalina.

      Como jardinero, no necesitas (por suerte) saber mucho más sobre el pH. Sin embargo, lo que sí tienes que entender es que cada vez que una punta de una raíz intercambia un catión de hidrógeno por un catión nutriente, la concentración de iones de hidrógeno en la solución aumenta. Cuando la concentración de H+ aumenta, el pH baja, es decir, el suelo se vuelve cada vez más ácido. Las cosas, sin embargo, suelen equilibrarse porque las superficies de las raíces también toman aniones de carga negativa, usando aniones hidróxidos (OH−) como medio de intercambio. Añadir OH− a la solución eleva el pH (es decir, el suelo se vuelve más alcalino) porque reduce la concentración de H+. Los hongos y bacterias son lo suficientemente pequeños para tener cationes y aniones en sus superficies, y retienen o liberan los minerales nutrientes que toman de la descomposición en el suelo. Esto también tiene un impacto en el pH del suelo.

      ¿Por qué hay que tener en cuenta el pH cuando hablamos de la red de nutrientes del suelo? El pH creado por los intercambios de iones nutrientes influencia qué clase de microrganismos vivirán en el suelo. Esto puede fomentar o disuadir la nitrificación y otras actividades biológicas que afectan al crecimiento de la planta. Y lo que es igualmente importante: cada planta tiene un pH del suelo óptimo. Tal y como aprenderás, esto tiene más que ver con la necesidad de ciertos hongos y bacterias que son importantes para esas plantas para que prosperen en un cierto pH que con la química en sí del pH.

      Conocer el pH de tu suelo resulta útil para determinar lo que quieres poner en tu suelo y, en todo caso, para sustentar tipos específicos de la red de nutrientes del suelo. Y saber el pH en la rizosfera ayuda a determinar si se requiere alguna enmienda para ayudar al crecimiento de las plantas.

      El resto de la primera parte cubre la biología que vive en el suelo. Sin embargo, primero tienes que valorar el suelo.

      3. Bacterias

      Las bacterias están por doquier. Pocos jardineros se dan cuenta de lo cruciales que son para la vida de sus plantas, y aún menos se han puesto a pensar en ellas. Y sin embargo, ningún otro organismo tiene más miembros en el suelo; de hecho, ni siquiera se acerca. En parte esto es así porque estos organismos unicelulares son tan minúsculos que en torno a doscientos cincuenta mil hasta quinientos mil de ellos cabrían dentro del punto que cierra esta frase.

      Las bacterias fueron las formas de vida más tempranas en la Tierra, pues aparecieron hace por lo menos tres mil millones de años. Son procariotas: su adn se encuentra en un único cromosoma que no está confinado en un núcleo. Su tamaño, o para ser más precisos la ausencia del mismo, debe de ser la razón principal de que nuestra familiaridad con las bacterias se limite por lo general a las enfermedades que causan y a la necesidad de lavarse las manos antes de comer. La mayoría de los nacidos durante el boom de la natalidad utilizaron un microscopio de mil aumentos para estudiar microrganismos, pero las bacterias son demasiado pequeñas para poderlas ver con cierto detalle con esta capacidad. Los microscopios escolares han mejorado, y algunos estudiantes afortunados pueden tener una visión más cercana, literalmente, de las bacterias. Las tres formas básicas, todas presentes en el suelo, son coco (esféricas u ovaladas), bacilo (con forma de vara) y helicoidal.

      En general,

Скачать книгу