Biomedical Data Mining for Information Retrieval. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biomedical Data Mining for Information Retrieval - Группа авторов страница 17

Biomedical Data Mining for Information Retrieval - Группа авторов

Скачать книгу

1–11, 2020.

      26. Johnson, A.E.W., Real-time mortality prediction in Intensive Care Unit. AMIA Annual Symposium Proceedings Archive, pp. 994–1003, 2018.

      27. Awad, A., Bader-EI-Den, M., McNicholas, J., Briggs, J., EI-Sonbaty, Y., Predicting hospital mortality for intensive care unit patients: Time series analysis. Health Inf. J., vol. 26(2), pp. 1043–1059, 2019.

      29. Caicedo-Torres, W. and Gutierrez, J., ISeeU: Visually Interpretable deep learning for mortality prediction inside the ICU. J. Biomed. Inform., Elsevier, 98, 103269, pp. 1–16, 2019.

      30. Ma, X., Si, Y., Wang, Z., Wang, Y., Length of stay prediction for ICU patients using individualized single classification algorithm. Comput. Methods Programs Biomed., 186, 105224, p. 1–11, 2020.

      31. Schönrock-Adema, J., Heijne-Penninga, M., van Hell, E.A., Cohen-Schotanus, J., Necessary steps in factor analysis: Enhancing validation studies of educational instruments. The PHEEM applied to clerks as an example. Med. Teach., 31, 6, e226–e232, 2009.

      32. Majhi, R., Panda, G., Sahoo, G., Development and performance evaluation of FLANN based model for forecasting of stock markets. Expert Syst. Appl., Elsevier, 36, 3, 6800–6808, 2009.

      33. Widrow, B., Adaptive signal processing, Prentice Hall, New Jersey, 1985.

      34. https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Discriminant_Analysis.pdf

      35. Han, J., Kamber, M., Pei, J., Data mining concepts and techniques, Third Edition, Elsevier, India, 2012.

      1 *Corresponding author: [email protected]

      2

      Artificial Intelligence in Bioinformatics

       V. Samuel Raj, Anjali Priyadarshini*, Manoj Kumar Yadav, Ramendra Pati Pandey, Archana Gupta and Arpana Vibhuti

       SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, India

       Abstract

      Artificial intelligence tries to replace human intelligence with machine intelligence to solve diverse biological problems. Recent developments in Artificial Intelligence (AI) are set to play a very essential role in the bioinformatics domain. Machine learning and deep learning, the emerging fields with respect to biological science have created a lot of excitement as research communities want to harness their robustness in the field of biomedical and health-informatics. In this book chapter, we will look at the recently introduced state of the art in the field of Bioinformatics using complex Artificial Intelligence algorithms. With various intelligent methods available, the most common problem is selection of the best method to be applied for any specific data set. Researchers need tools, which present the data in a comprehensible fashion, annotated with context, estimates of accuracy and explanation. Thus the various smart tools available and their advantages and disadvantages have been the major focus of this chapter.

      Keywords: AI, bioinformatics, protein prediction, drug discovery, gene sequence, deep learning in bioinformatics, gene expression

      We are aware of the fact that one medicine for all is not valid anymore due to genetic variations arising in different ethnic population or due to mutations. It becomes pertinent to develop personalized medicine and Artificial intelligence (AI) which is referred to as the core of the fourth revolution of science and technology would be able to provide an opportunity to achieve this for precision public health [1, 2]. This can be done by fact that medical AI generates an all-round promotion of medical services which includes accurate image interpretation, enabling fast data processing, improving workflow, and reducing medical errors in the healthcare system [3]. Due to improved medical facilities worldwide geriatric population has increased. Advancing age is associated with multiple ailments which compromises the quality of life and tend to have a high morbidity of chronic diseases [4, 5]. Therefore elderly people have a higher demand for AI because their demand for medical service increases and a more rapid, accessible, and cost-efficient medical model need is prevalent. Medical services with AI assistance Various AI-aided services such as AI mobile platforms for monitoring medication adherence, early intelligent detection of health issues, and medical interventions among home-dwelling patients [6, 7] have the potential to meet such needs.

Скачать книгу