Global Drought and Flood. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Global Drought and Flood - Группа авторов страница 17

Global Drought and Flood - Группа авторов

Скачать книгу

on 29 June 2018 to the International Space Station (ISS) that provides ET estimates. This product has a spatial resolution of ~70 m and temporal resolution of approximately 3 days and is variable depending on ISS. Different ECOSTRESS data products are available for download through the United States Geological Survey (USGS) satellite image query tool (https://earthexplorer.usgs.gov/).

Schematic illustration of three-month Standardized Precipitation Evapotranspiration Index (SPEI) with 1° spatial resolution.

      (Source: The Standardized Precipitation Evapotranspiration Index (SPEI), http://spei.csic.es/map/maps.html)

      1.2.5. Snow

Schematic illustration of Evaporative Stress Index (ESI) derived from observations of land surface temperatures and leaf area index from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites and the Visible Infrared Imaging Radiometer Suite (VIIRS) of the Suomi National Polar-orbiting Partnership (NPP).

      (Courtesy: NASA’s earth observatory: https://earthobservatory.nasa.gov/images)

      Van Loon and Van Lanen (2012) described different scenarios of snow related drought according to their development: (a) rain‐to‐snow season drought, (b) cold snow season drought, and (c) warm snow season drought. Rain‐to‐snow season drought is developed due to a shortage of rainfall in the rain season (spring, summer and/or autumn) and ends in snow season (winter) with precipitation being in the form of snow. Consequently, soil moisture, streamflow, and groundwater remain relatively low until the upcoming melt season. Cold snow season drought is a result of abnormally low temperature in the snow season and a possible coincidence with below‐average precipitation that can be categorized into three subtypes of A, B, and C. Subtype A describes climates with continuous snow cover during winter and below zero temperature. Early beginning of the snow season is the main driver of this drought type. Subtype B has the same climate as A, however, delay in snowmelt due to low temperature at the end of winter drives this type of snow drought. Subtype C is climate with a temperature around zero and limited snow accumulation in winter. Snowmelt often provides recharge to groundwater and streamflow during snow season. An abnormal temperature drop in winter results in an intermediate shortage of water for a few weeks to months duration.

      Harpold et al. (2017) divided snow drought into two categories: (a) warm snow drought, where accumulated precipitation during October–March is larger than the long‐term average and SWE on 1st April is less than the long‐term average; (b) dry snow drought, where accumulated precipitation for the same period is less than the long‐term average and SWE on 1st April is less than the long‐term average SWE.

      Snowpack is often characterized in terms of snow albedo (SA), snow depth (SD), SWE, DPS, snow covered area (SCA), and fractional snow‐covered area (fSCA) (Kongoli et al., 2012). Remote sensing can effectively describe the relationship between snowpack dynamics and climate variability (Guan et al., 2012). Using remote sensing techniques and retrieval algorithms to measure snow‐related variables may provide insight for real‐time snow drought monitoring. The following provides a very short review of different remote sensing data and products that can be used to characterize snowpack.

      Snow possesses a strong spectral gradient that ranges from high albedo in visible wavelengths to low reflectance in middle infrared wavelengths. Therefore, a commonly used method such as the band ratios can be utilized to map and monitor snow cover (Lettenmaier et al., 2015). The Normalized Difference Snow Index (NDSI) is one that shows the presence of snow on the ground. The NDSI algorithm distinguishes between snow and most cloud types, therefore, it better characterizes the snow cover areas than fSCA. The NDSI utilizes the reflectance ratios to detect snow and is described as the normalized difference between green and SWIR reflectance (R GreenR SWIR2)/(R Green + R SWIR2) (Hall et al., 2002). Hatchett and McEvoy (2018) suggested using NDSI in conjunction with data from ground‐based observation networks to monitor snow drought. In forested regions, however, the NDSI has shown poor snow identification accuracy and the recently developed Normalized Difference Forest Snow Index (NDFSI) can

Скачать книгу