Global Drought and Flood. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Global Drought and Flood - Группа авторов страница 21

Global Drought and Flood - Группа авторов

Скачать книгу

been made to generate NDVI from observations of multiple satellite missions including AVHRR and MODIS (Beck et al., 2011; Pinzon & Tucker, 2014; Tucker et al., 2005).

      A change in satellite sensors, such as a follow‐up mission, is introduction of a great deal of uncertainty in modeling drought, and these uncertainties are often unquantified (Mehran et al., 2014). Therefore, an ideal way to tackle the problem is to provide uncertainty bounds along with raw observations. This uncertainty and the structural and parameter uncertainty resulting from model‐based simulations can be merged together to help decision making in operational applications (Sadegh, Ragno, et al., 2017). Such models and indicators are now being used more frequently and they quantify the uncertainty associated with satellite observations (AghaKouchak & Mehran, 2013; Entekhabi et al., 2010; Gebremichael, 2010). Therefore, the more remote sensing data are tailored for drought assessment, the more decision makers and drought experts can be engaged with remote sensing data.

      1 Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P.P., Janowiak, J., et al. (2003). The version‐2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147–1167.

      2 AghaKouchak, A., Cheng, L., Mazdiyasni, O., & Farahmand, A. (2014). Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophysical Research Letters, 41(24), 8847–8852. https://doi.org/10.1002/2014GL062308

      3 Aghakouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D., & Hain, C.R. (2015). Remote sensing of drought: Progress, challenges, and opportunities. Reviews of Geophysics, 53, 452–480. https://doi.org/10.1002/2014RG000456

      4 AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T., & Lund, J. (2015). Water and climate: Recognize anthropogenic drought. Nature News, 524(7566), 409.

      5 AghaKouchak, A., & Mehran, A. (2013). Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resources Research, 49(10), 7144–7149.

      6 AghaKouchak, A., Mehran, A., Norouzi, H., & Behrangi, A. (2012). Systematic and random error components in satellite precipitation data sets. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012GL051592

      7 AghaKouchak, A., & Nakhjiri, N. (2012). A near real‐time satellite‐based global drought climate data record. Environmental Research Letters, 7(4), 44037.

      8 Alborzi, A., Mirchi, A., Moftakhari, H., Mallakpour, I., Alian, S., Nazemi, A., et al. (2018). Climate‐informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts. Environmental Research Letters, 13(8), p.084010.

      9 Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684.

      10 Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization, Rome.

      11 Allen, R.G., Tasumi, M., & Trezza, R. (2007). Satellite‐based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133(4), 380–394.

      12 Ambaw, G.M. (2013). Satellite based remote sensing of soil moisture for drought detection and monitoring in the Horn of Africa. PhD thesis, Politecnico di Torino, Turin, Italy.

      13 Andela, N., Liu, Y.Y., Van Dijk, A., De Jeu, R.A.M., & McVicar, T.R. (2013). Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences, 10(10), 6657–6676. https://doi.org/10.5194/bg‐10‐6657‐2013

      14 Anderson, M., & Kustas, W. (2008). Thermal remote sensing of drought and evapotranspiration. Eos, Transactions American Geophysical Union, 89(26), 233–234.

      15 Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., & Kustas, W.P. (2007). A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. Journal of Geophysical Research: Atmospheres, 112(D11).

      16 Anderson, M.C., Cammalleri, C., Hain, C.R., Otkin, J., Zhan, X., & Kustas, W. (2013). Using a diagnostic soil‐plant‐atmosphere model for monitoring drought at field to continental scales. Procedia Environmental Sciences, 19, 47–56.

      17 Anderson, M.C., Zolin, C.A., Sentelhas, P.C., Hain, C.R., Semmens, K., Yilmaz, M.T., et al. (2016). The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sensing of Environment, 174, 82–99.

      18 Anderson, W.B., Zaitchik, B.F., Hain, C.R., Anderson, M.C., Yilmaz, M.T., Mecikalski, J., & Schultz, L. (2012). Towards an integrated soil moisture drought monitor for East Africa. Hydrology and Earth System Sciences, 16(8), 2893–913.

      19 Ashouri, H., Hsu, K.‐L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., et al. (2015). PERSIANN‐CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83.

      20 Ashraf, S., AghaKouchak, A., Nazemi, A., Mirchi, A., Sadegh, M., Moftakhari, H.R., et al. (2019). Compounding effects of human

Скачать книгу