Global Drought and Flood. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Global Drought and Flood - Группа авторов страница 22

Global Drought and Flood - Группа авторов

Скачать книгу

T.R., Cole, J.E., Overpeck, J.T., Pederson, G.T., & Meko, D.M. (2014). Assessing the risk of persistent drought using climate model simulations and paleoclimate data. Journal of Climate, 27(20), 7529–7549. https://doi.org/10.1175/JCLI‐D‐12‐00282.1

      22 Beck, H.E., McVicar, T.R., van Dijk, A.I.J.M., Schellekens, J., de Jeu, R.A.M., & Bruijnzeel, L.A. (2011). Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sensing of Environment, 115(10), 2547–2563.

      23 Behrangi, A., Tian, Y., Lambrigtsen, B.H., & Stephens, G.L. (2014). What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resources Research, 50(6), 4893–4905.

      24 Behrangi, A., Fetzer, E.J., Granger, S.L., Behrangi, A., Fetzer, E.J., Early, S.L.G., et al. (2016). Early detection of drought onset using near surface temperature and humidity observed from space. International Journal of Remote Sensing, 1161,3911–3923. https://doi.org/10.1080/01431161.2016.1204478

      25 Bhalme, H.N., & Mooley, D.A. (1980). Large‐scale droughts/floods and monsoon circulation. Monthly Weather Review, 108(8), 1197–1211.

      26 Bloomfield, J.P., & Marchant, B.P. (2013). Analysis of groundwater drought building on the standardised precipitation index approach. Hydrology and Earth System Sciences, 17, 4769–4787.

      27 Bowman, D.M.J.S., & Johnston, F.H. (2005). Wildfire smoke, fire management, and human health. EcoHealth, 2(1), 76–80.

      28 Boyle, J., & Klein, S.A. (2010). Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP‐ICE period. Journal of Geophysical Research: Atmospheres, 115(D23).

      29 Brodzik, M.J., Long, D.G., Hardman, M.A., Paget, A. & Armstrong, R.(2016). MEaSUREs Calibrated Enhanced‐Resolution Passive Microwave Daily EASE‐Grid 2.0 Brightness Temperature ESDR, Version 1 (updated 2018). Boulder, CO: NASA NSIDC DAAC. 10.5067/MEASURES/CRYOSPHERE/NSIDC‐0630.001.

      30 Brogniez, H., Fallourd, R., Mallet, C., Sivira, R., & Dufour, C. (2016). Estimating confidence intervals around relative humidity profiles from satellite observations: application to the SAPHIR sounder. Journal of Atmospheric and Oceanic Technology, 33(5), 1005–1022. https://doi.org/10.1175/JTECH‐D‐15‐0237.1

      31 Brown, J.F., Wardlow, B.D., Tadesse, T., Hayes, M.J., & Reed, B.C. (2008). The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience and Remote Sensing, 45(1), 16–46.

      32 Byun, H.‐R., & Wilhite, D.A. (1999). Objective quantification of drought severity and duration. Journal of Climate, 12(9), 2747–2756.

      33 Cassou, C., Terray, L., & Phillips, A.S. (2005). Tropical Atlantic influence on European heat waves. Journal of Climate, 18(15), 2805–2811.

      34 Chang, K.‐Y., Xu, L., & Starr, G. (2018). A drought indicator reflecting ecosystem responses to water availability: The Normalized Ecosystem Drought Index. Agricultural and Forest Meteorology, 250, 102–117.

      35 Chiang, F., Mazdiyasni, O., & AghaKouchak, A. (2018). Amplified warming of droughts in southern United States in observations and model simulations. Science Advances, 4(8), eaat2380.

      36 Chikamoto, Y., Timmermann, A., Widlansky, M.J., Balmaseda, M.A., & Stott, L. (2017). Multi‐year predictability of climate, drought, and wildfire in southwestern North America. Nature Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598‐017‐06869‐7

      37 Cunha, A.P.M., Alvalá, R.C., Nobre, C.A., & Carvalho, M.A. (2015). Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agricultural and Forest Meteorology, 214–215, 494–505. https://doi.org/10.1016/j.agrformet.2015.09.010

      38 D’Odorico, P., Laio, F., & Ridolfi, L. (2010). Does globalization of water reduce societal resilience to drought? Geophysical Research Letters, 37(13).

      39 Dalezios, N. R., Blanta, A., & Spyropoulos, N. V. (2012). Assessment of remotely sensed drought features in vulnerable agriculture. Natural Hazards and Earth System Sciences, 12(10), 3139–3150.

      40 De Jeu, R.A.M., Wagner, W., Holmes, T.R.H., Dolman, A.J., Van De Giesen, N.C., & Friesen, J. (2008). Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surveys in Geophysics, 29(4–5), 399–420.

      41 Dong, J., & Crow, W.T. (2017). An improved triple collocation analysis algorithm for decomposing autocorrelated and white soil moisture retrieval errors. Journal of Geophysical Research: Atmospheres, 122(24), 13,081–13,094. https://doi.org/10.1002/2017JD027387

      42 Donohue, R.J., McVicar, T.R., & Roderick, M.L. (2010). Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386(1–4), 186–197.

      43 Dracup, J.A., Lee, K.S., & Paulson Jr, E.G. (1980). On the definition of droughts. Water Resources Research, 16(2), 297–302.

      44 Durand, M., Molotch, N.P., & Margulis, S.A. (2008). A Bayesian approach to snow water equivalent reconstruction. Journal of Geophysical Research: Atmospheres, 113(D20). https://doi.org/10.1029/2008JD009894

      45 Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., et al. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5), 704–716.

      46 Famiglietti, J.S., Lo, M., Ho, S.L., Bethune, J., Anderson, K.J., Syed, T.H., et al. (2011). Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophysical Research Letters, 38(3).

      47 Farahmand, A., AghaKouchak, A., & Teixeira, J. (2015). A vantage from space can detect earlier drought onset: An approach using relative humidity. Nature Scientific Reports, 5, 8553.

      48 Faunt, C.C., Stamos, C.L., Flint, L.E., Wright, M.T., Burgess, M.K., Sneed, M., et al. (2015). Hydrogeology, hydrologic effects of development, and simulation of groundwater flow in the Borrego Valley, San Diego County, California. Scientific Investigations Report 2015‐5150. Sacramento, CA: U.S. Geological Survey.

      49 Ferranti, L., & Viterbo, P. (2006). The European summer of 2003: Sensitivity to soil water initial conditions. Journal of Climate, 19(15), 3659–3680.

      50 Ferraro, R.R. (1997). Special sensor microwave imager derived global rainfall estimates for climatological applications. Journal of Geophysical Research: Atmospheres, 102(D14), 16715–16735.

      51 Fetzer, E.J., Lambrigtsen, B.H., Eldering, A., Aumann, H.H., & Chahine, M.T. (2006). Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. Journal of Geophysical Research: Atmospheres, 111(D9). https://doi.org/10.1029/2005JD006598

      52 Feudale, L., & Shukla, J. (2007). Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophysical

Скачать книгу