Global Drought and Flood. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Global Drought and Flood - Группа авторов страница 20

Global Drought and Flood - Группа авторов

Скачать книгу

or semiarid regions. The United Nations Environment Program reported that the European heatwave in 2003 was the world’s most costly weather disaster (Mazdiyasni & AghaKouchak, 2015). During 2003, multiple European countries faced an unprecedented heatwave that increased ozone concentrations and imposed substantial health‐related issues on the population (Poumadere et al., 2005).

Schematic illustration of temperature anomalies by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. (a) Compound heatwave and drought hazards in Russia during summer of 2010. (b) The unprecedented heatwave in Australia between 7 and 14 February 2017.

      (Courtesy of NASA’s earth observatory: https://earthobservatory.nasa.gov/images)

      Heatwaves, especially in Europe, are usually caused by two feedback mechanisms of high sensible heat emissions and upper‐air anticyclonic circulations, with the latter having more drastic effects (Cassou et al., 2005). Studies over Europe suggest that it is possible to have hot summers succeeding a normal or even wet winter and spring conditions, if the land surfaces are desiccated. The desiccated land surface in the Mediterranean region forms a dry air that diminishes clouds and reduces convection and the dry air is transported to the north by a southerly wind, where it dramatically increases temperature and ultimately evapotranspiration demand of vegetation. Rossby wave trains arising from sea surface temperature anomalies in the tropical Atlantic are an example of anticyclonic circulations that result in heatwaves and droughts (Cassou et al., 2005). Ferranti and Viterbo (2006) argued that the formation of desiccated soil reduces energy evaporated as latent heat while increasing sensible heat, which in turn enhances the ratio of sensible over latent heat fluxes. Accordingly, the dry soil increases the thickness of the lower layer of the troposphere that favors the development of anticyclonic circulation anomalies. Warmer sea surface temperatures in the Mediterranean Sea also contributes to development of anticyclonic circulations; nevertheless, soil moisture content at the beginning of summer is the major determining factor for development of concurrent summer heatwaves and flash droughts (Feudale & Shukla, 2007; Zampieri et al., 2009). The concurrence of heatwaves and droughts has yet to be fully explored and further global scale studies are required for developing appropriate strategies to mitigate drought‐related losses.

      When it comes to data processing and analysis of satellite imageries, different algorithms can help in distinguishing pixels and identifying objects, such as deep learning methods. There are some atmospheric features, however, that act as a barrier for certain optical and infrared satellite instruments and result in data inconsistencies. Optical‐based vegetation indicators are error prone when the area studied has atmospheric effects, cloud cover, aerosols, and water vapor (Andela et al., 2013). Moreover, optical satellite observation only reflects information from the top of the canopy. These problems can be resolved using microwave sensors that provide the opportunity to monitor carbon cycling during drought episodes over the long term. A unique approach would be to combine the vegetation optical depth (VOD; Owe et al., 2001) with optical based methods (i.e., NDVI) for a complementary analysis that considers both canopy top greenness and biomass. Combination of microwave, optical, and lidar observations provides an opportunity to monitor ecosystem response to drought that often continues even after drought recovery (C. D. Allen et al., 2010). Recent studies indicate that some variables such as snow and relative humidity can be integrated into drought monitoring models for improving estimations of drought recovery and detection of its onset, respectively (AghaKouchak et al., 2014; Rott et al., 2010).

      Another challenging issue with remote sensing observations is the process of preserving large historical records, as it requires large and costly infrastructure and help of professional to store these data. Climatic data records can be merged together to produce longer records that would be appropriate for assessment of

Скачать книгу