Soil Health Analysis, Set. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Soil Health Analysis, Set - Группа авторов страница 37

Soil Health Analysis, Set - Группа авторов

Скачать книгу

A., Field, D.J., and Koch, A. (2014). The dimensions of soil security. Geoderma 213, 203–213. doi:10.1016/j.geoderma.2013.08.013

      39 Mena Mesa, N., Ruiz‐Vega, J., Funes‐Monzote, F.R., Carrillo‐Rodriguez, J.C., and Velasco‐Velasco, V. (2014). Indicators of agroecological sustainability of three tillage systems for maize (Zea mays L.) production. Agroecology and Sustainable Food Systems 38(4), 410–426. doi:10.1080/21683565.2013.870626

      40 Moebius‐Clune, B.N., Moebius‐Clune, D.J., Gugino, B.K., Idowu, O.J., Schindelbeck, R.R., Ristow, A.J., van Es, H.M., Thies, J.E., Shayler, H.A., McBride, M.B., Kurtz, K.S.M., Wolfe, D.W., and Abawi, G.S. (2016). Comprehensive assessment of soil health–The Cornell framework , edition 3.2, Geneva, NY: Cornell University.

      41 Montgomery, D.R. (2007). Dirt: The erosion of civilizations , 2nd ed. Berkeley, CA: University of California Press.

      42 Morrow, J.G., Huggins, D.R., Carpenter‐Boggs, L.A., and Reganold, J.P. (2016). Evaluating measures to assess soil health in long‐term agroecosystem trials. Soil Sci. Soc. Am. J. 80, 450–462. doi:10.2136/sssaj2015.08.0308

      43 Mulder, V.L., de Bruin, S., Schaepman, M. (2011). The Use of Remote Sensing in Soil and Terranin Mapping‐ A Review. Geoderma 162 (1–2): 1–19, https://doi.org/10.1016/j.geoderma.2010.12.018

      44 Necpálová, M., Anex Jr., R.P., Kravchenko, A.N., Abendroth, L.J., Del Grosso, S.J., Dick, W.A., Helmers, M.J., Herzmann, D., Lauer, J.G., Nafziger, E.D., Sawyer, J.E., Scharf, P.C., Strock, J.S., and Villamil, M.B. (2014). What does it take to detect a change in soil carbon stock? A regional comparison of minimum detectable difference and experiment duration in the north central United States. J. Soil Water Conserv. 69(6), 517–531. doi:10.2489/jswc.69.6.517

      45 Ontl, T.A., Cambardella, C.A., Schulte, L.A., and Kolka, R.K. (2015). Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma 255–256, 1–11. doi:10.1016/j.geoderma.2015.04.016

      46 Rasul, G., and Thapa, G.B. (2004). Sustainability of ecological and conventional agricultural systems in Bangladesh: An assessment based on environmental, economic and social perspectives. Agric. Syst. 79(3), 327–351. doi:10.1016/S0308‐521X(03)00090‐8

      47  Reicosky, D.C. (2015). Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 70(5), 103–108. doi:10.2489/jswc.70.5.103A

      48 Roper, W.R., Osmond, D.L., Heitman, J.L., Wagger, M.G., and Reberg‐Horton, S.C. (2017). Soil health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Sci. Soc. Am. J. 81(4), 828–843. doi:10.2136/sssaj2016.12.0400

      49 Rule, G.K. (1937). Conserving corn belt soils. Farmers’ Bulletin No. 1795. Washington, D.C.: U.S. Gov. Print. Office.

      50 Schindelbeck, R.R., van Es, H.M., Abawi, G.S., Wolfe, D.W., Whitlow, T.L., Gugino, B.K., Idowu, O.J., and Moebius‐Clune, B.N. (2008). Comprehensive assessment of soil quality for landscape and urban management. Landsc. Urban Plan. 88(2‐4), 73–80. doi:10.1016/j.landurbplan.2008.08.006

      51 Schnepf, M., and Cox, C. (2006). Environmental benefits of conservation on cropland: The status of our knowledge. Ankeny, IA: Soil and Water Conservation Society.

      52 Shoshany, M., Goldshleger, N., Argaman, E., Chudnovsky, A. (2013). Monitoring of Agricultural Soil Degradation by Remote‐Sensing Methods: A Review. International Journal of Remote Sensing 34 (17): 6152–6181, https://doi.org/10.1080/01431161.2013.793872

      53 Skaggs, R.W., Breve, M.A., and Gilliam, J.W. (1994). Hydrologic and water‐quality impacts of agricultural drainage. Crit. Rev. Environ. Sci. Technol. 24(1), 1–32. doi:10.1080/10643389409388459

      54 Sparks, D.L., A.L. Page, P.A. Helmke, and R.H. Loeppert, editors. 1996. Methods of soil analysis part 3—chemical methods. SSSA Book Ser. 5.3. Madison, WI: SSSA, ASA. doi:10.2136/sssabookser5.3.

      55 Steffan, J.J., Brevik, E.C., Burgess, L.C., and Cerdà, A. (2017). The effect of soil on human health: A review. Eur. J. Soil Sci. 69(1), 159–171. doi:10.1111/ejss.12451

      56 Stoll, S. (2003). Larding the lean earth: Soil and society in nineteenth‐century America. New York: Hill and Wang.

      57 Stone, D., Ritz, K., Griffiths, B.G., Orgiazzi, A., and Creamer, R.E. (2016). Selection of biological indicators appropriate for European soil monitoring. Appl. Soil Ecol. 97, 12–22. doi:10.1016/j.apsoil.2015.08.005

      58 Ulery, A.L., and Drees, R., (eds.). (2008). Methods of soil analysis: Part 5 mineralogical methods. SSSA Book Ser. 5.5. Madison, WI: SSSA. doi:10.2136/sssabookser5.5

      59 USDA NRCS. (2019a). National conservation practice standards. Washington, D.C.: USDA‐NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/cp/ncps/

      60 USDA NRCS. 2019b. Soil health management. Washington, D.C.: USDA‐NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/mgnt/

      61 van Es, H.M., and Karlen, D.L. (2019). Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields. Soil Sci. Soc. Am. J. 83(3), 721–732. doi:10.2136/sssaj2018.09.0338

      62 Veum, K.S., K.W. Goyne, R.J. Kremer, Miles, R.J., and Sudduth, K.A. (2014). Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 117(1), 81–99. doi:10.1007/s10533‐013‐9868‐7

      63 Veum, K.S., Kremer, R.J., Sudduth, K.A., Kitchen, N.R., Lerch, R.N., Baffaut, C., Stott, D.E., Karlen, D.L., and Sadler, E.J. (2015). Conservation effects on soil quality indicators in the Missouri Salt River Basin. J. Soil Water Conserv. 70(4), 232–246. doi:10.2489/jswc.70.4.232

      64 VeVerka, J.S., Udawatta, R.P., and Kremer, R.J. (2019). Soil health indicator responses on Missouri claypan soils affected by landscape position, depth, and management practices. J. Soil Water Conserv. 74(2), 126–137. doi:10.2489/jswc.74.2.126

      65 Williams, A., Kane, D.A., Ewing, P.M., Atwood, L.W., Jilling, A., Li, M., Lou, Y., Davis, A.S., Grandy, A.S., Huedi, S.C., Hunter, M.C., Koide, R.T., Mortensen, D.A., Smith, R.G., Snapp, S.S., Spokas, K.A., Yannarell, A.C., and Jordan, N.R. (2016). Soil functional zone management: A vehicle for enhancing production and soil ecosystem services in row‐crop agroecosystems. Front. Plant Sci. 7, 1–65. doi:10.3389/fpls.2016.00065

      66 Wolde, B. Lal, P., Alavaapati, J., Burli, P., and Iranah, P. (2016). Soil and water conservation using the socioeconomics, sustainability concerns, and policy preference for residual biomass harvest. J. Soil Water Conserv. 71(6):476–483. doi:10.2489/jswc.71.6.476

       Jane M.‐F. Johnson and Maysoon M. Mikha

      Soil health, also called soil quality, has both inherent edaphic components and dynamic properties, which interact with management and climatic affects (Karlen, Ditzler, & Andrews, 2003). Inherent soil characterization has been an integral part of potential land use assessments for decades. In contrast, the concept of soil health has evolved with a primary focus on agronomic productivity but

Скачать книгу