Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 38

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

      Corollary 1.55: Let and be such that . Then, and (1.3) holds.

      A second corollary of Theorem 1.54 follows by the fact that Riemann–Stieltjes integrals are special cases of Perron–Stieltjes integrals. Then, it suffices to apply Theorems 1.49 and 1.53.

      Corollary 1.56: Suppose the following conditions hold:

      1 either and , with ;

      2 or and .

       Then, , equality (1.3) holds, and we have

      (1.4)integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d ModifyingAbove f With tilde left-parenthesis t right-parenthesis equals alpha left-parenthesis b right-parenthesis ModifyingAbove f With tilde left-parenthesis b right-parenthesis minus alpha left-parenthesis a right-parenthesis ModifyingAbove f With tilde left-parenthesis a right-parenthesis minus integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis ModifyingAbove f With tilde left-parenthesis t right-parenthesis period

      The next theorem is due to C. S. Hönig (see [129]), and it concerns multipliers for Perron–Stieltjes integrals.

      Theorem 1.57: Suppose and . Then, and Eqs. (1.3) and (1.4) hold.

      Since upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis subset-of upper S upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, it is immediate that if f element-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and alpha element-of upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, then alpha f element-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis. As a matter of fact, the next result gives us information about the multipliers for the Henstock vector integral. See [72, Theorem 7].

      Theorem 1.58: Assume that and . Then, and equalities (1.3) and (1.4) hold.

      Proof. Since f element-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, f overTilde is continuous by Theorem 1.49. Thus, given epsilon greater-than 0, there exists delta Superscript asterisk Baseline greater-than 0 such that

omega left-parenthesis f overTilde comma left-bracket c comma d right-bracket right-parenthesis equals sup left-brace parallel-to ModifyingAbove f With tilde left-parenthesis t right-parenthesis minus ModifyingAbove f With tilde left-parenthesis s right-parenthesis parallel-to colon t comma s element-of left-bracket c comma d right-bracket right-brace less-than epsilon comma

      whenever 0 less-than d minus c less-than delta Superscript asterisk, where left-bracket c comma d right-bracket subset-of left-bracket a comma b right-bracket. Moreover, there is a gauge delta on left-bracket a comma b right-bracket, with delta left-parenthesis t right-parenthesis less-than StartFraction delta Superscript asterisk Baseline Over 2 EndFraction for t element-of left-bracket a comma b right-bracket, such that for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t less-than epsilon period

      Thus,

StartLayout 1st Row 1st Column Blank 2nd Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times times of alpha alpha left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti times times of alpha alpha left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t separator d separator t 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis t separator d separator t 3rd Row 1st Column Blank 2nd Column less-than vertical-bar vertical-bar vertical-bar vertical-bar alpha Subscript infinity Baseline epsilon plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar 
						<noindex><p style= Скачать книгу