Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 42

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

      Theorem 1.68: Consider functions , , , that is,

beta left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis comma for every t element-of left-bracket a comma b right-bracket

       and assume that . Thus, if and only if , in which case, we have

      (1.12)integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis equals integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis d beta left-parenthesis t right-parenthesis period

      Proof. By hypothesis, alpha element-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper W right-parenthesis right-parenthesis. Therefore, for every epsilon greater-than 0, there is a gauge delta of left-bracket a comma b right-bracket such that for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma t Subscript i Baseline right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket, we have

vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d left-brace right-brace minus minus times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 integral integral t minus minus i 1 ti of alpha alpha left-parenthesis right-parenthesis t times times d of ff left-parenthesis right-parenthesis t less-than epsilon period

      Taking approximated Riemannian‐type sums for the integrals integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis and integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis d beta left-parenthesis t right-parenthesis, we obtain

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times times of gamma gamma left-parenthesis right-parenthesis xi i of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of gamma gamma left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of beta beta left-parenthesis right-parenthesis ti of beta beta left-parenthesis right-parenthesis t minus minus i 1 2nd Row 1st Column Blank 2nd Column equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of gamma gamma left-parenthesis right-parenthesis xi i left-brace right-brace minus minus times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 integral integral minus minus times times ti 1 ti of alpha alpha left-parenthesis right-parenthesis t times times d of ff left-parenthesis right-parenthesis t equals upper I period EndLayout

      On the other hand, when gamma Subscript i Baseline element-of upper L left-parenthesis upper X comma upper Y right-parenthesis and x Subscript i Baseline element-of upper X, we have

sigma-summation Underscript i equals i Overscript n Endscripts gamma Subscript i Baseline x Subscript i Baseline equals sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis gamma Subscript j Baseline minus gamma Subscript j minus 1 Baseline right-parenthesis left-parenthesis sigma-summation Underscript i equals j Overscript n Endscripts x Subscript i Baseline right-parenthesis plus gamma 0 left-parenthesis sigma-summation Underscript i equals j Overscript n Endscripts x Subscript i Baseline right-parenthesis comma n element-of double-struck upper N period

      Then, taking x Subscript i Baseline equals alpha left-parenthesis xi Subscript i Baseline right-parenthesis left-bracket f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket minus integral Subscript t i minus 1 Superscript t Subscript i Baseline Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis, gamma Subscript i Baseline equals gamma left-parenthesis xi Subscript i Baseline right-parenthesis, gamma 0 equals gamma left-parenthesis a right-parenthesis, and n equals StartAbsoluteValue d EndAbsoluteValue, we get

upper I equals vertical-bar vertical-bar vertical-bar vertical-bar plus plus sigma-summation sigma-summation equals equals j 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis xi j of gamma gamma left-parenthesis right-parenthesis xi minus minus j 1 left-parenthesis right-parenthesis sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar dxi of gamma gamma 0 left-parenthesis right-parenthesis sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar dxi less-than-or-slanted-equals upper S upper V left-parenthesis gamma right-parenthesis epsilon plus parallel-to gamma left-parenthesis a right-parenthesis parallel-to epsilon comma

      because the Saks‐Henstock lemma (Lemma 1.45) yields vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar dxi less-than-or-slanted-equals epsilon, for every j element-of StartSet 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue EndSet.

      

      Corollary 1.69: Consider functions , , , and . Then, we have , , and Eq. (1.12) holds.

      Proof. Theorem 1.47, item (i), yields

Скачать книгу