Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 46

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

ModifyingAbove alpha With tilde Subscript f Baseline left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis equals 0 comma for every t element-of left-bracket a comma b right-bracket period

      Proof. Consider the sets

StartLayout 1st Row 1st Column Blank 2nd Column upper E equals StartSet t element-of double-struck upper R colon alpha left-parenthesis t right-parenthesis not-equals 0 EndSet and upper E Subscript n Baseline equals StartSet t element-of upper E colon n minus 1 less-than parallel-to alpha left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals n EndSet comma 2nd Row 1st Column Blank 2nd Column for each n element-of double-struck upper N period EndLayout

      By hypothesis, m left-parenthesis upper E right-parenthesis equals 0, where m denotes the Lebesgue measure. Hence, m left-parenthesis upper E Subscript n Baseline right-parenthesis equals 0 for every n element-of double-struck upper N. In addition, f element-of upper S upper L left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. Then, for every n element-of double-struck upper N and every epsilon greater-than 0, there exists a gauge delta Subscript n on upper E Subscript n such that, for every delta Subscript n-fine tagged partial division d equals left-parenthesis xi Subscript n Sub Subscript i Subscript Baseline comma left-bracket t Subscript n Sub Subscript i Subscript minus 1 Baseline comma t Subscript n Sub Subscript i Subscript Baseline right-bracket right-parenthesis element-of italic upper T upper P upper D Subscript left-bracket a comma b right-bracket, with xi Subscript n Sub Subscript i Baseline element-of upper E Subscript n, for i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue, we have

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts parallel-to f left-parenthesis t Subscript n Sub Subscript i Subscript Baseline right-parenthesis minus f left-parenthesis t Subscript n Sub Subscript i Subscript minus 1 Baseline right-parenthesis parallel-to less-than StartFraction epsilon Over n 2 Superscript n Baseline EndFraction period

      Consider a gauge delta of left-bracket a comma b right-bracket such that delta left-parenthesis xi right-parenthesis equals delta Subscript n Baseline left-parenthesis xi right-parenthesis, whenever xi element-of upper E Subscript n, and delta left-parenthesis xi right-parenthesis can assume any value in left-parenthesis 0 comma infinity right-parenthesis, otherwise. Then, for every delta-fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket, we have

StartLayout 1st Row 1st Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts parallel-to alpha left-parenthesis xi Subscript i Baseline right-parenthesis left-bracket f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket parallel-to less-than-or-slanted-equals 2nd Column sigma-summation Underscript n element-of double-struck upper N Endscripts sigma-summation Underscript xi Subscript i Baseline element-of upper E Subscript n Endscripts parallel-to alpha left-parenthesis xi Subscript i Baseline right-parenthesis parallel-to parallel-to f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis parallel-to 2nd Row 1st Column less-than-or-slanted-equals 2nd Column sigma-summation Underscript n element-of double-struck upper N Endscripts n sigma-summation Underscript xi Subscript i Baseline element-of upper E Subscript n Baseline Endscripts parallel-to f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis parallel-to less-than epsilon EndLayout

      and we complete the proof.

      Given a function f colon left-bracket a comma b right-bracket right-arrow upper X, since upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis subset-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, Theorem 1.81 holds for upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis instead of upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis. Then, next proposition follows easily (see, also, [70, Corollary after Theorem 5]).

      Proposition 1.82: Suppose and . Assume, in addition, that is such that almost everywhere in . Then, and , for every . If, moreover, , then .

      In view of Proposition 1.82, we can define equivalence classes of nonabsolute vector integrable functions.

Скачать книгу