Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 49

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

      By Corollary 1.50, alpha overTilde Subscript f Baseline element-of upper C Subscript a Baseline left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis equals StartSet x element-of upper C left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis colon x left-parenthesis a right-parenthesis equals 0 EndSet. Let us denote by upper C Subscript a Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis the subspace of upper C Subscript a Baseline left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis of functions which are differentiable with continuous derivative. Hence, there is a function h element-of upper C Subscript a Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis such that

      Let beta colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis be defined by beta left-parenthesis t right-parenthesis x equals h prime left-parenthesis t right-parenthesis, for all x element-of upper X such that x not-equals 0, and by beta left-parenthesis t right-parenthesis 0 equals 0. In particular, beta left-parenthesis t right-parenthesis f prime left-parenthesis t right-parenthesis equals h prime left-parenthesis t right-parenthesis whenever f prime left-parenthesis t right-parenthesis not-equals 0. Therefore, beta left-parenthesis t right-parenthesis f prime left-parenthesis t right-parenthesis equals h prime left-parenthesis t right-parenthesis for almost every t element-of left-bracket a comma b right-bracket, since f colon left-bracket a comma b right-bracket right-arrow upper X is differentiable and nonconstant on any nondegenerate subinterval of left-bracket a comma b right-bracket. Hence, beta element-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis. Then, the Riemann integral integral Subscript a Superscript b Baseline beta left-parenthesis s right-parenthesis f prime left-parenthesis s right-parenthesis d s exists and

      Let delta 1 be the gauge on left-bracket a comma b right-bracket from the definition of integral Subscript a Superscript b Baseline beta left-parenthesis s right-parenthesis f prime left-parenthesis s right-parenthesis d s. Take t element-of left-bracket a comma b right-bracket, and for every xi element-of left-bracket a comma t right-bracket, let delta 2 left-parenthesis xi right-parenthesis greater-than 0 be such that if xi minus delta 2 left-parenthesis xi right-parenthesis less-than s less-than xi less-than u less-than xi plus delta 2 left-parenthesis xi right-parenthesis, then, by the Straddle Lemma (Lemma 1.86), we have