Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 50

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

vertical-bar minus minus minus of ff left-parenthesis right-parenthesis u of ff left-parenthesis right-parenthesis s times times of ff prime left-parenthesis right-parenthesis xi left-parenthesis right-parenthesis minus minus us less-than epsilon left-parenthesis u minus s right-parenthesis period"/>

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of beta beta left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 integral integral at times times of beta beta left-parenthesis right-parenthesis s of ff prime left-parenthesis right-parenthesis s separator d separator s 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of beta beta left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times times of beta beta left-parenthesis right-parenthesis xi i of ff prime left-parenthesis right-parenthesis ti left-parenthesis right-parenthesis minus minus tit minus minus i 1 3rd Row 1st Column Blank 2nd Column plus vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times times of beta beta left-parenthesis right-parenthesis xi i of ff prime left-parenthesis right-parenthesis ti left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral at times times of beta beta left-parenthesis right-parenthesis s of ff prime left-parenthesis right-parenthesis s separator d separator s 4th Row 1st Column Blank 2nd Column less-than vertical-bar vertical-bar vertical-bar vertical-bar beta sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 times times of ff prime left-parenthesis right-parenthesis ti left-parenthesis right-parenthesis minus minus tit minus minus i 1 plus epsilon 5th Row 1st Column Blank 2nd Column less-than vertical-bar vertical-bar vertical-bar vertical-bar beta sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts epsilon left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis plus epsilon equals vertical-bar vertical-bar vertical-bar vertical-bar beta epsilon left-parenthesis t minus a right-parenthesis plus epsilon comma EndLayout

      1.3.5 A Convergence Theorem

      As the last result of this introductory chapter, we mention a convergence theorem for Perron–Stieltjes integrals. Such result is used in Chapter 3. A proof of it can be found in [180, Theorem 2.2].

      

      Theorem 1.88: Consider functions and , for . Suppose

limit Underscript n right-arrow infinity Endscripts parallel-to f Subscript n Baseline minus f parallel-to equals 0 comma limit Underscript n right-arrow infinity Endscripts parallel-to alpha Subscript n Baseline minus alpha parallel-to equals 0 and sup Underscript n element-of double-struck upper N Endscripts v a r Subscript a Superscript b Baseline left-parenthesis alpha Subscript n Baseline right-parenthesis less-than infinity period

       Then

limit Underscript n right-arrow infinity Endscripts left-parenthesis sup Underscript t element-of left-bracket a comma b right-bracket Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral at minus minus times times times d of alpha alpha n left-parenthesis right-parenthesis s of ffn left-parenthesis right-parenthesis s integral integral at times times times d of alpha alpha left-parenthesis right-parenthesis s of ff left-parenthesis right-parenthesis s right-parenthesis equals 0 period

      In 1969, E. J. McShane (see [173, 174]) showed that a small change in the subdivision process of the domain of integration within the Kurzweil–Henstock (or Perron) integral leads to the Lebesgue integral. This is a very nice finding, since now the Lebesgue integral can be taught by presenting its Riemannian definition straightforwardly and, then, obtaining immediately some very interesting properties such as the linearity of the Lebesgue integral which comes directly from the fact that the Riemann sum can be split into two sums. The monotone convergence theorem for the Lebesgue integral is another example of a result which is naturally obtained from its equivalent definition due to McShane.

      The Kurzweil integral and the variational Henstock integral can be extended to Banach space-valued functions as well as to the evaluation of integrands over unbounded intervals. The extension of the McShane integral, proposed by R. A. Gordon (see [107]) to Banach space-valued functions, gives a more general integral than that of Bochner–Lebesgue. As a matter of fact, the idea of McShane into the definition due to Kurzweil enlarges the class of Bochner–Lebesgue integrals.

      On

Скачать книгу