Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 48

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

one fourth Baseline e 21 plus integral Subscript one fourth Superscript one half Baseline e 22 plus integral Subscript one half Superscript three fourths Baseline e 23 plus integral Subscript three fourths Superscript 1 Baseline e 24 equals one fourth left-parenthesis e 21 plus e 22 plus e 23 plus e 24 right-parenthesis"/>

      and, hence,

vertical-bar vertical-bar vertical-bar vertical-bar g 2 Subscript upper A Baseline equals sup Underscript 0 less-than-or-slanted-equals t less-than-or-slanted-equals 1 Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral 0 tg 2 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar integral integral 01 g 2 Subscript 2 Baseline equals left-parenthesis 4 StartFraction 1 Over 4 squared EndFraction right-parenthesis Superscript one half Baseline equals left-parenthesis one fourth right-parenthesis Superscript one half Baseline period vertical-bar vertical-bar vertical-bar vertical-bar gi Subscript upper A Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals j 12 i integral integral minus minus j 12 ij 2 ie times times ij Subscript 2 Baseline equals left-bracket 2 Superscript i Baseline left-parenthesis StartFraction 1 Over 2 Superscript i Baseline EndFraction right-parenthesis squared right-bracket Superscript one half Baseline equals StartFraction 1 Over 2 Superscript StartFraction i Over 2 EndFraction Baseline EndFraction comma

      for every i element-of double-struck upper N. Then,

vertical-bar vertical-bar vertical-bar vertical-bar minus minus fnfm Subscript upper A Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i plus plus n 1 mgi Subscript upper A Baseline less-than-or-slanted-equals sigma-summation Underscript i equals n plus 1 Overscript m Endscripts StartFraction 1 Over 2 Superscript StartFraction i Over 2 EndFraction Baseline EndFraction

      which goes to zero for sufficiently large n comma m element-of double-struck upper N, with n greater-than m. Thus, left-brace f Subscript n Baseline right-brace Subscript n element-of double-struck upper N is a parallel-to dot parallel-to Subscript upper A Baseline-Cauchy sequence. On the other hand,

vertical-bar vertical-bar vertical-bar vertical-bar of ffn left-parenthesis right-parenthesis t Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar plus plus plus plus of gg 1 left-parenthesis right-parenthesis t of gg 2 left-parenthesis right-parenthesis t midline-horizontal-ellipsis of ggn left-parenthesis right-parenthesis t Subscript 2 Baseline equals StartRoot n EndRoot comma

      for every t element-of left-bracket 0 comma 1 right-bracket. Hence, there is no function f left-parenthesis t right-parenthesis element-of l 2 left-parenthesis double-struck upper N times double-struck upper N right-parenthesis, with t element-of left-bracket 0 comma 1 right-bracket, such that limit Underscript n right-arrow infinity Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus fnf Subscript upper A Baseline equals 0.

      The next result follows from Theorem 1.80. A proof of it can be found in [75, Theorem 5].

      Theorem 1.85: Suppose is nonconstant on any nondegenerate subinterval of . Then, the mapping

alpha element-of bold upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis right-arrow from bar alpha overTilde Subscript f Baseline element-of upper C Subscript a Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis

       is an isometry, that is onto a dense subspace of .

      The next result, known as straddle Lemma, will be useful to prove that the space upper G left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis of regulated functions from left-bracket a comma b right-bracket to upper L left-parenthesis upper X comma upper Y right-parenthesis is dense in bold upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis in the Alexiewicz norm vertical-bar vertical-bar vertical-bar vertical-bar dot Subscript upper A comma f. For a proof of the straddle Lemma, the reader may want to consult [130, 3.4] or [119].

      Lemma 1.86 (Straddle Lemma): Suppose are functions such that is differentiable, with , for all . Then, given , there exists such that

vertical-bar vertical-bar vertical-bar vertical-bar minus minus minus of FF left-parenthesis right-parenthesis t of FF left-parenthesis right-parenthesis s times times of ff left-parenthesis right-parenthesis xi left-parenthesis right-parenthesis minus minus ts less-than epsilon left-parenthesis t minus s right-parenthesis comma

       whenever .

      Proposition 1.87: Suppose is differentiable and nonconstant on any nondegenerate subinterval of . Then, the Banach space is dense in under the Alexiewicz norm .

      Proof. Assume that alpha element-of bold upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis and let epsilon greater-than 0 be given. We need to find a function beta element-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis such that vertical-bar vertical-bar vertical-bar vertical-bar minus minus beta alpha Subscript upper A comma f Baseline less-than epsilon, or

Скачать книгу