Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 54

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

the first summand on the right-hand side of the last inequality is smaller than epsilon by (1.A.2), the third summand is smaller than epsilon by the definition of n Subscript epsilon and, if we refine the gauge delta, we may suppose, by the definition of upper I Subscript n Sub Subscript epsilon, that the second summand is smaller than epsilon, and the proof is complete.

      Lemma 1.94: Let be a sequence in and be a function. If , then and

limit Underscript n right-arrow infinity Endscripts left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline f Subscript n Baseline left-parenthesis t right-parenthesis d t equals left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline f left-parenthesis t right-parenthesis d t period

      Proof. By Lemma 1.93, f element-of italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, and we have the convergence of the integrals. It remains to prove that f element-of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, that is, for every epsilon greater-than 0, there exists a gauge delta on left-bracket a comma b right-bracket such that for every delta-fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of italic upper T upper P upper D Subscript left-bracket a comma b right-bracket,

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 less-than-or-slanted-equals epsilon period

      However,

StartLayout 1st Row 1st Column Blank 2nd Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis t of ffn left-parenthesis right-parenthesis t separator d separator t 2nd Row 1st Column Blank 2nd Column plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti of ffn left-parenthesis right-parenthesis t separator d separator t times times of ffn left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis period EndLayout

      Since integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t d t right-arrow 0 as n tends to infinity, there exists n Subscript epsilon Baseline greater-than 0 such that the first summand in the last inequality is smaller than StartFraction epsilon Over 3 EndFraction for all n greater-than-or-slanted-equals n Subscript epsilon. Choose an n greater-than-or-slanted-equals n Subscript epsilon. Then, we can take delta such that the third summand is smaller than StartFraction epsilon Over 3 EndFraction, because it approaches integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t d t. In addition, once f Subscript n Baseline element-of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, we can refine delta so that the second summand becomes smaller than StartFraction epsilon Over 3 EndFraction, and we finish the proof.

Скачать книгу