Periodización del entrenamiento deportivo. Tudor O. Bompa
Чтение книги онлайн.
Читать онлайн книгу Periodización del entrenamiento deportivo - Tudor O. Bompa страница 9
Las fibras de contracción rápida y lenta coexisten en una proporción relativamente similar, aunque, dependiendo de su función, ciertos grupos musculares (p. ej., isquiotibiales, bíceps) parecen contener mayores proporciones de fibras de contracción rápida, mientras que otros (p. ej., el sóleo) cuentan con una mayor proporción de fibras de contracción lenta. En la tabla 2.1 se comparan las características de las fibras de contracción lenta y las de contracción rápida.
Estas características se modifican con el entrenamiento. Estudios realizados por los investigadores daneses Andersen y Aagaard (1994, 2008, 2010, 2011) demuestran que cuando soportan un entrenamiento voluminoso o un entrenamiento de naturaleza láctica, las fibras tipo IIx desarrollan las características de las fibras tipo IIa. Es decir, las cadenas pesadas de miosina de estas fibras se vuelven más lentas y más eficaces cuando el trabajo se realiza en presencia de ácido láctico. El cambio se puede invertir reduciendo el volumen de entrenamiento (afinamiento), tras lo cual las fibras tipo IIx revierten a su carácter original de ser las fibras de contracción más rápidas (Andersen y Aagaard, 2000). El entrenamiento de la fuerza también aumenta el tamaño de las fibras, con lo cual se consigue una mayor producción de fuerza.
La contracción de una unidad motora de contracción rápida es más rápida y poderosa que la de una unidad de contracción lenta, razón por la que suele registrarse una proporción más elevada de fibras de contracción rápida en los deportistas que triunfan en deportes de potencia y velocidad, pese a que también se fatigan más pronto. Por el contrario, los atletas con más fibras de contracción lenta tienen más éxito en deportes de fondo, porque rinden mejor con un trabajo de menor intensidad y mayor duración.
El reclutamiento de las fibras musculares sigue el principio del tamaño, también llamado principio de Hennemann (1965), el cual establece que las unidades motoras y las fibras musculares se reclutan en orden de tamaño, de más pequeñas a más grandes, empezando siempre por las fibras musculares de contracción lenta. Si la carga es de intensidad baja o moderada, las fibras musculares de contracción lenta se reclutan y ejercitan como caballos de tiro. Si se emplea una carga pesada, las fibras de contracción lenta inician la contracción, aunque las fibras de contracción rápida asumen el mando con rapidez. Cuando se ejecuta hasta el fallo una serie de repeticiones con una carga moderada, las unidades motoras compuestas de fibras de contracción más rápida se reclutan de manera gradual para mantener la producción de fuerza mientras se fatigan las unidades motoras reclutadas previamente (véase la figura 2.1).
Tabla 2.1 Comparación entre las fibras de contracción rápida y lenta
DE CONTRACCIÓN LENTA | DE CONTRACCIÓN RÁPIDA |
Rojas, de tipo I, aeróbicas | Blancas, de tipo II, anaeróbicas |
•Se fatigan con lentitud.•Neurona más pequeña: inerva entre 100 y 180 fibras musculares.•Genera contracciones largas e ininterrumpidas.•Se usan en pruebas de resistencia.•Se reclutan durante trabajos de intensidad baja y alta. | •Se fatigan con rapidez.•Neurona más grande: inerva entre 300 y 500 (o más) fibras musculares.•Genera contracciones cortas y forzadas.•Se usan en pruebas de velocidad y potencia.•Se reclutan sólo durante trabajos de alta intensidad. |
Es posible observar diferencias en la distribución de los tipos de fibras musculares de los atletas que practican distintos deportes. Para mostrar este punto, las figuras 2.2 y 2.3 ofrecen un perfil general de los porcentajes de fibras de contracción lenta y rápida de los atletas de deportes seleccionados. Por ejemplo, las diferencias drásticas entre velocistas y maratonianos sugieren con claridad que el éxito en algunos deportes está determinado, al menos en parte, por la composición, establecida por la genética, de las fibras musculares.
Figura 2.1 Secuencia de reclutamiento de unidades motoras en una serie de repeticiones, hasta cometer un fallo concéntrico.
Figura 2.2 Distribución de los tipos de fibras entre atletas masculinos. Repárese en el predominio de fibras de contracción lenta en los atletas dedicados a deportes en los que impera el ejercicio aeróbico, y de fibras de contracción rápida en los atletas que se dedican a deportes en los que se impone la velocidad y la potencia.
Datos de D. L. Costill, J. Daniels, W. Evans, W. Fink, G. Krahenbuhl y B. Saltin, 1976. «Skeletal muscle enzymes and fiber composition in male and female track athletes», Journal of Applied Physiology 40(2): 149-154; y P . D. Gollnick, R. B. Armstrong, C. W. Saubert, K. Piehl y B. Saltin, 1972. «Enzyme activity and fiber composition in skeletal muscle of untrained and trained men», Journal of Applied Physiology 33(3): 312-319.
Figura 2.3 Distribución de los tipos de fibras entre atletas femeninas.
Datos de D. L. Costill, J. Daniels, W. Evans, W. Fink, G. Krahenbuhl y B. Saltin, 1976. «Skeletal muscle enzymes and fiber composition in male and female track athletes», Journal of Applied Physiology 40(2): 149-154; y P . D. Gollnick, R. B. Armstrong, C. W. Saubert, K. Piehl y B. Saltin, 1972. «Enzyme activity and fiber composition in skeletal muscle of untrained and trained men», Journal of Applied Physiology 33(3): 312-319.
En consecuencia, los picos de potencia generados por los atletas también guardan relación con la distribución de los tipos de fibras: cuanto mayor sea el porcentaje de fibras de contracción rápida, mayor la potencia generada por el atleta. El porcentaje de fibras de contracción rápida también está relacionado con la velocidad: cuanto mayor es la velocidad desplegada por un atleta, mayor es su porcentaje de fibras de contracción rápida. Este tipo de individuos son grandes velocistas y saltadores, y con este talento natural suelen derivar en deportes en los que la velocidad y la potencia son dominantes. Es una pérdida de tiempo intentar que sean, por ejemplo, corredores de fondo; en tales competiciones, su éxito sólo puede ser moderado, mientras que sobresaldrán como velocistas o jugadores de béisbol o fútbol (por sólo mencionar unos pocos deportes en los que impera la velocidad o la potencia).
Mecanismo de las contracciones musculares
Como describimos con anterioridad, las contracciones musculares son producto de una serie de acciones en que intervienen los filamentos de proteínas, llamadas miosina y actina. Los filamentos de miosina contienen puentes cruzados o minúsculas extensiones hacia los filamentos de actina. La activación que provoca su contracción estimula toda la fibra y provoca cambios químicos que permiten a los filamentos de actina unirse a los puentes cruzados de miosina. La unión de miosina y actina mediante puentes cruzados libera energía provocando que los puentes cruzados giren sobre su propio eje y generen tracción o deslicen el filamento de miosina sobre el filamento de actina. Este movimiento deslizante provoca el acortamiento (contracción) del músculo, lo cual genera fuerza.
Para verlo desde